
Why Open Source Software / Free Software
(OSS/FS)? Look at the Numbers!

David A. Wheeler
http://www.dwheeler.com/contactme.html

Revised as of November 7, 2004

This paper provides quantitative data that, in many cases, using open source software / free
software is a reasonable or even superior approach to using their proprietary competition
according to various measures. This paper’s goal is to show that you should consider using
OSS/FS when acquiring software. This paper examines market share, reliability,
performance, scalability, security, and total cost of ownership. It also has sections on non-
quantitative issues, unnecessary fears, OSS/FS on the desktop, usage reports, governments
and OSS/FS, other sites providing related information, and ends with some conclusions. An
appendix gives more background information about OSS/FS. You can view this paper at
http://www.dwheeler.com/oss_fs_why.html (HTML format). Palm PDA users may wish to use
Plucker to view this. A short briefing based on this paper is also available in PDF and Open
Office Impress formats (for the latter, use Open Office Impress). Old archived copies and a
list of changes are also available.

1. Introduction
Open Source Software / Free Software (OSS/FS) has risen to great prominence. Briefly,
OSS/FS programs are programs whose licenses give users the freedom to run the program for
any purpose, to study and modify the program, and to redistribute copies of either the original
or modified program (without having to pay royalties to previous developers).

This goal of this paper is to show that you should consider using OSS/FS when you’re
looking for software, based on quantitative measures. Some sites provide a few anecdotes on
why you should use OSS/FS, but for many that’s not enough information to justify using
OSS/FS. Instead, this paper emphasizes quantitative measures (such as experiments and
market studies) on why using OSS/FS products is, in many circumstances, a reasonable or
even superior approach. I should note that while I find much to like about OSS/FS, I’m not a
rabid advocate; I use both proprietary and OSS/FS products myself. Vendors of proprietary
products often work hard to find numbers to support their claims; this page provides a useful
antidote of hard figures to aid in comparing proprietary products to OSS/FS.

Note that this paper’s goal is not to show that all OSS/FS is better than all proprietary
software. Certainly, there are many who believe this is true from ethical, moral, or social
grounds, users do have control and flexibility advantages when they can modify and maintain
their own software, and some countries perceive political advantages to not depending on a
company from another country. However, no numbers could prove the broad claim that
OSS/FS is always better. Instead, I’ll simply compare commonly-used OSS/FS software with
commonly-used proprietary software, to show that at least in certain situations and by certain
measures, some OSS/FS software is at least as good or better than its proprietary competition.
Of course, some OSS/FS software is technically poor, just as some proprietary software is
technically poor, and even very good software may not fit your specific needs. But although
most people understand the need to compare proprietary products before using them, many
people fail to even consider OSS/FS products. This paper is intended to explain why acquirers
should consider OSS/FS alternatives. This paper doesn’t examine transition approaches, but

it’s worth noting that organizations can transition to OSS/FS in part or in stages, which for
many is a more practical transition approach.

I’ll emphasize the operating system (OS) known as GNU/Linux (which many abbreviate as
“Linux”) and the Apache web server, since these are some of the most visible OSS/FS
projects. I’ll also primarily compare OSS/FS software to Microsoft’s products (such as
Windows and IIS), since Windows has a significant market share and Microsoft is one of
proprietary software’s strongest proponents. I’ll mention Unix systems in passing as well,
though the situation with Unix is more complex; today’s Unix systems include many OSS/FS
components or software primarily derived from OSS/FS components. Thus, comparing
proprietary Unix systems to OSS/FS systems (when examined as whole systems) is often not
as clear-cut. This paper uses the term “Unix-like” to mean systems intentionally similar to
Unix; both Unix and GNU/Linux are “Unix-like” systems. The most recent Apple Macintosh
OS (MacOS OS X) presents the same kind of complications; older versions of MacOS were
wholly proprietary, but Apple’s OS has been redesigned so that it’s now based on a Unix
system with substantial contributions from OSS/FS programs. Indeed, Apple is now openly
encouraging collaboration with OSS/FS developers.

Sometimes it’s illegal to publicly criticize proprietary software, which does reduce the
amount of information available. Many proprietary product licenses include clauses that
forbid public criticism of the product without the vendor’s permission. Obviously, there’s no
reason that such permission would be granted if a review is negative! As a result, reviewers
may change their report so it can be published, or not report at all (they might not even start
the evaluation). Some laws, such as UCITA (a law in Maryland and Virginia), specifically
enforce these clauses forbidding free speech, and in many other locations the law is unclear -
making researchers bear the risk that these clauses might be enforced. These legal risks do
cause a chilling effect on researchers, and it’s not a theoretical problem; these license clauses
have already prevented some public critique. In spite of these legal tactics to prevent
disclosure of data not controlled by a vendor, there is still a great deal of publicly available
data, as this paper shows.

This paper omits or at least tries to warn about studies funded by a product’s vendor.
Remember that vendor-sponsored studies are often rigged (no matter who the vendor is) to
make the vendor look good instead of being fair comparisons. Todd Bishop’s January 27,
2004 article in the Seattle Post-Intelligencer Reporter discusses the serious problems when a
vendor funds published research about itself. A study funder could directly pay someone and
ask them to lie, but it’s not necessary; a smart study funder can produce the results they wish
without, strictly speaking, lying. For example, a study funder can make sure that the
evaluation carefully defines a specific environment or extremely narrow question that shows a
positive trait of their product (ignoring other, probably more important factors), require an
odd measurement process that happens show off their product, seek unqualified or
unscrupulous reviewers who will create positive results (without careful controls or even
without doing the work!), create an unfairly different environment between the compared
products (and not say so or obfuscate the point), require the reporter to omit any especially
negative results, or even fund a large number of different studies and only allow the positive
reports to appear in public. That doesn’t mean that all vendor-funded studies are misleading,
but many are, and there’s no way to be sure which studies are actually valid. For example,
Microsoft’s “get the facts” campaign identifies many studies, but they’re almost entirely
vendor-funded! And Microsoft is by no means the only company that does this; many
companies do this, and the concerns about vendor-funded studies applies equally to vendors
of OSS/FS products. After a pair of vendor-funded studies were publicly lambasted, Forrester
Research announced that it will no longer accept projects that involve paid-for, publicized
product comparisons. One ad, based on a vendor-sponsored study, was found to be misleading
by the UK Advertising Standards Authority (an independent, self-regulatory body), who

formally adjudicated against the vendor. This example is important because the study was
touted as being fair by an “independent” group, yet it was found unfair by an organization
who examines advertisements; failing to meeting the standard for truth for an advertisement is
a very low bar. I’m independent; I have received no funding of any kind to write this paper,
and I have no financial reason to prefer OSS/FS or proprietary software.

This paper includes data over a series of years, not just the past year; all relevant data should
be considered when making a decision, instead of arbitrarily ignoring older data. Note that the
older data shows that OSS/FS has a history of many positive traits, as opposed to being a
temporary phenomenon.

You can get a more detailed explanation of the terms “open source software” and “Free
Software”, as well as related information, from the appendix and my list of Open Source
Software / Free Software (OSS/FS) references at http://www.dwheeler.com/oss_fs_refs.html.
Note that those who use the term “open source software” tend to emphasize technical
advantages of such software (such as better reliability and security), while those who use the
term “Free Software” tend to emphasize freedom from control by another and/or ethical
issues. The opposite of OSS/FS is “closed” or “proprietary” software. Software for which the
source code that can be viewed, but cannot modified and redistributed without further
limitation (e.g., “source viewable” or “open box” software, including “shared source” and
“community” licenses), are not considered here since they don’t meet the definition of
OSS/FS. Many OSS/FS programs are commercial programs, so don’t make the mistake of
thinking OSS/FS is equivalent to “non-commercial” software (indeed, any article making this
mistake should be ignored since it is obviously poorly researched). Almost no OSS/FS
programs are in the “public domain” (which has a specific legal meaning), so avoid that term
as well. Other alternative terms for OSS/FS software include “libre software” (where libre
means free as in freedom), free-libre and open-source software (FLOS software or FLOSS),
open source / Free Software (OS/FS), free / open source software (FOSS), open-source
software (indeed, “open-source” is often used as a general adjective), “freed software,” and
even “public service software” (since often these software projects are designed to serve the
public at large). OSS/FS is not “freeware”; freeware is usually defined as proprietary software
given away without cost, and does not provide any right to examine, modify, or redistribute
the source code. The most popular OSS/FS license is the General Public License (GPL); all
software released under the GPL is OSS/FS, but not all OSS/FS software uses the GPL;
nevertheless, some people do inaccurately use the term “GPL software” when they mean
OSS/FS software.

This is a large paper, with many acronyms. A few of the most common acryonyms are:

Acronym Meaning
GNU GNU’s Not Unix (a project to create an OSS/FS operating system)
GPL General Public License (the most common OSS/FS license)

OS, OSes Operating System, Operating Systems

OSS/FS Open Source Software/Free Software

Below is data discussing market share, reliability, performance, scalability, security, and total
cost of ownership. I close with a brief discussion of non-quantitative issues, unnecessary
fears, OSS/FS on the desktop, usage reports, other sites providing related information, and
conclusions. A closing appendix gives more background information about OSS/FS. Each
section has many subsections or points. The non-quantitative issues section includes
discussions about freedom from control by another (especially a single source), protection
from licensing litigation, flexibility, social / moral / ethical issues, and innovation. The
unnecessary fears section discusses issues such as support, legal rights, copyright

infringement, abandonment, license unenforceability, GPL “infection”, economic non-
viability, starving programmers, compatibility with capitalism, elimination of competition,
elimination of “intellectual property”, unavailability of software, importance of source code
access, an anti-Microsoft campaign, and what’s the catch. And the appendix discusses
definitions of OSS/FS, motivations of developers and developing companies, history,
licenses, OSS/FS project management approaches, and forking.

2. Market Share
Many people think that a product is only a winner if it has significant market share. This is
lemming-like, but there’s some rationale for this: products with big market shares get
applications, trained users, and momentum that reduces future risk. Some writers argue
against OSS/FS or GNU/Linux as “not being mainstream”, but if their use is widespread then
such statements reflect the past, not the present. There’s excellent evidence that OSS/FS has
significant market share in numerous markets:

1. The most popular web server has always been OSS/FS since such data have been
collected. For example, Apache is currently the #1 web server with over three
times the market share of its next-ranked competitor. Netcraft’s statistics on web
servers have consistently shown Apache (an OSS/FS web server) dominating the
public Internet web server market ever since Apache grew into the #1 web server in
April 1996. Before that time, the NCSA web server (Apache’s ancestor) dominated
the web from August 1995 through March 1996 - and it is also OSS/FS.

Netcraft’s June 2004 survey polled all the web sites they could find (totaling
51,635,284 sites), and found that of all the sites they could find, counting by name,
Apache had 67.22% of the market, Microsoft had 21.35%, Sun had 3.21%, and Zeus
had 1.48%.

However, many web sites have been created that are simply “placeholder” sites (i.e.,
their domain names have been reserved but they are not being used); such sites are
termed “inactive.” Thus, since 2000, Netcraft has been separately counting “active”
web sites. Netcraft’s count of only the active sites is a more relevant figure than
counting all web sites, since the count of active sites shows the web server selected by
those who choose to actually develop a web site. Apache does extremely well when
counting active sites; in June 2004, Apache had 68.71% of the web server market,
Microsoft had 23.08%, Zeus had 1.1%, and Sun had 0.77%. Here is the total market
share (by number of active web sites):

Market Share for Active Web Servers, June 2000 - June 2004

Netcraft’s September 2002 survey reported on websites based on their “IP address”
instead of the host name; this has the effect of removing computers used to serve
multiple sites and sites with multiple names. When counting by IP address, Apache
has shown a slow increase from 51% at the start of 2001 to 54%, while Microsoft has
been unchanged at 35%. Again, a clear majority.

CNet’s ”Apache zooms away from Microsoft’s Web server” summed up the year
2003 noting that “Apache grew far more rapidly in 2003 than its nearest rival,
Microsoft’s Internet Information Services (IIS), according to a new survey--meaning
that the open-source software remains by far the most widely used Web server on the
Internet.”

Apache’s dominance in the web server market has been independently confirmed by
Security Space - their report on web server market share published June 1, 2004
surveyed 14,820,541 web servers in May 2004 and found that Apache was #1
(70.99%%), with Microsoft IIS being #2 (22.12%%). E-soft also reports specifically
on secure servers (web servers supporting SSL/TLS, such as e-commerce sites); while
much closer, Apache still leads with 49.15% market share, as compared to
Microsoft’s 41.83%, Netscape/iPlanet’s 2.58%, and Stronghold’s 0.76%. Since
Stronghold is a repackaging of Apache, Apache’s real market share is at least
49.91%.

Obviously these figures fluctuate monthly; see Netcraft and E-soft for the latest
survey figures.

2. GNU/Linux is the #2 web serving OS on the public Internet (counting by
physical machine), according to a study by Netcraft surveying March and June
2001. Some of Netcraft’s surveys have also included data on OSes; two 2001 surveys
(their June 2001 and September 2001 surveys) found that GNU/Linux is the #2 OS
for web servers when counting physical machines (and has been consistently gaining
market share since February 1999). As Netcraft themselves point out, the usual
Netcraft web server survey (discussed above) counts web server hostnames rather
than physical computers, and so it doesn’t measure such things as the installed

hardware base. Companies can run several thousand web sites on one computer, and
most of the world’s web sites are located at hosting and co-location companies.

Therefore, Netcraft developed a technique that indicates the number of actual
computers being used as Web servers, together with the OS and web server software
used (by arranging many IP addresses to reply to Netcraft simultaneously and then
analyzing the responses). This is a statistical approach, so many visits to the site are
used over a month to build up sufficient certainty. In some cases, the OS detected is
that of a “front” device rather than the web server actually performing the task. Still,
Netcraft believes that the error margins world-wide are well within the order of plus
or minus 10%, and this is in any case the best available data.

Before presenting the data, it’s important to explain Netcraft’s system for dating the
data. Netcraft dates their information based on the web server surveys (not the
publication date), and they only report OS summaries from an earlier month. Thus,
the survey dated “June 2001” was published in July and covers OS survey results of
March 2001, while the survey dated “September 2001” was published in October and
covers the operating system survey results of June 2001.

Here’s a summary of Netcraft’s study results:

OS group Percentage
(March)

Percentage
(June) Composition

Windows 49.2% 49.6% Windows 2000, NT4, NT3,
Windows 95, Windows 98

[GNU/]Linux 28.5% 29.6% [GNU/]Linux

Solaris 7.6% 7.1% Solaris 2, Solaris 7, Solaris 8

BSD 6.3% 6.1% BSDI BSD/OS, FreeBSD, NetBSD,
OpenBSD

Other Unix 2.4% 2.2%
AIX, Compaq Tru64, HP-UX,
IRIX, SCO Unix, SunOS 4 and
others

Other non-
Unix 2.5% 2.4% MacOS, NetWare, proprietary IBM

OSs

Unknown 3.6% 3.0% not identified by Netcraft OS
detector

Much depends on what you want to measure. Several of the BSDs (FreeBSD,
NetBSD, and OpenBSD) are OSS/FS as well; so at least a part of the 6.1% for BSD
should be added to GNU/Linux’s 29.6% to determine the percentage of OSS/FS OSes
being used as web servers. Thus, it’s likely that approximately one-third of web
serving computers use OSS/FS OSes. There are also regional differences, for
example, GNU/Linux leads Windows in Germany, Hungary, the Czech Republic, and
Poland.

Well-known web sites using OSS/FS include Google (GNU/Linux) and Yahoo
(FreeBSD).

If you really want to know about the web server market breakdown of “Unix vs.
Windows,” you can find that also in this study. All of the various Windows OSes are

rolled into a single number (even Windows 95/98 and Windows 2000/NT4/NT3 are
merged, although they are fundamentally very different systems). Merging all the
Unix-like systems in a similar way produces a total of 44.8% for Unix-like systems
(compared to Windows’ 49.2%) in March 2001.

Note that these figures would probably be quite different if they were based on web
addresses instead of physical computers; in such a case, the clear majority of web
sites are hosted by Unix-like systems. As stated by Netcraft, “Although Apache
running on various Unix systems runs more sites than Windows, Apache is heavily
deployed at hosting companies and ISPs who strive to run as many sites as possible
on one computer to save costs.”

3. GNU/Linux is the #1 server OS on the public Internet (counting by domain
name), according to a 1999 survey of primarily European and educational sites.
The first study that I’ve found that examined GNU/Linux’s market penetration is a
survey by Zoebelein in April 1999. This survey found that, of the total number of
servers deployed on the Internet in 1999 (running at least ftp, news, or http (WWW))
in a database of names they used, the #1 OS was GNU/Linux (at 28.5%), with others
trailing. It’s important to note that this survey, which is the first one that I’ve found to
try to answer questions of market share, used existing databases of servers from the
.edu (educational domain) and the RIPE database (which covers Europe , the Middle
East, parts of Asia, and parts of Africa), so this isn’t really a survey of “the whole
Internet” (e.g., it omits “.com” and “.net”). This is a count by domain name (e.g., the
text name you would type into a web browser for a location) instead of by physical
computer, so what it’s counting is different than the Netcraft June 2001 OS study.
Also, this study counted servers providing ftp and news services (not just web
servers).

Here’s how the various OSes fared in the study:

Operating
System

Market
Share Composition

GNU/Linux 28.5% GNU/Linux

Windows 24.4% All Windows combined (including 95, 98, NT)

Sun 17.7% Sun Solaris or SunOS

BSD 15.0% BSD Family (FreeBSD, NetBSD, OpenBSD,
BSDI, ...)

IRIX 5.3% SGI IRIX

A part of the BSD family is also OSS/FS, so the OSS/FS OS total is even higher; if
over 2/3 of the BSDs are OSS/FS, then the total share of OSS/FS would be about
40%. Advocates of Unix-like systems will notice that the majority (around 66%) were
running Unix-like systems, while only around 24% ran a Microsoft Windows variant.

4. GNU/Linux was the #2 server OS sold in 1999, 2000, and 2001. According to a
June 2000 IDC survey of 1999 licenses, 24% of all servers (counting both Internet
and intranet servers) installed in 1999 ran GNU/Linux. Windows NT came in first
with 36%; all Unixes combined totaled 15%. Again, since some of the Unixes are
OSS/FS systems (e.g., FreeBSD, OpenBSD, and NetBSD), the number of OSS/FS
systems is actually larger than the GNU/Linux figures. Note that it all depends on
what you want to count; 39% of all servers installed from this survey were Unix-like

(that’s 24%+15%), so “Unix-like” servers were actually #1 in installed market share
once you count GNU/Linux and Unix together.

IDC released a similar study on January 17, 2001 titled “Server Operating
Environments: 2000 Year in Review”. On the server, Windows accounted for 41% of
new server OS sales in 2000, growing by 20% - but GNU/Linux accounted for 27%
and grew even faster, by 24%. Other major Unixes had 13%.

IDC’s 2002 report found that Linux held its own in 2001 at 25%. All of this is
especially intriguing since GNU/Linux had 0.5% of the market in 1995, according to
a Forbes quote of IDC. Data such as these (and the TCO data shown later) have
inspired statements such as this one from IT-Director on November 12, 2001: “Linux
on the desktop is still too early to call, but on the server it now looks to be
unstoppable.”

These measures do not measure all server systems installed that year; some Windows
systems are not paid for (they’re illegally pirated), and OSS/FS OSes such as
GNU/Linux and the BSDs are often downloaded and installed on multiple systems
(since it’s legal and free to do so).

Note that a study published October 28, 2002 by the IT analyst company Butler
Group concluded that on or before 2009, Linux and Microsoft’s .Net will have fully
penetrated the server OS market from file and print servers through to the mainframe.

5. GNU/Linux and Windows systems (when Windows CE and XP are combined)
are the leaders and essentially even in terms of developer use for future
embedded projects, according to Evans Data Corporation (EDC). Their
Embedded Systems Developer Survey, fielded in July 2002, asked developers “For
each of the following operating systems, please indicate whether you are targeting the
OS on your current project or your next project.” They collected data from 444
developers. Their results: 30.2% of embedded developers use or expect to use Linux,
while 16.2% say they will use Windows CE and another 14.4% say they will use
Windows XP Embedded. If the two Windows systems are combined, this gives
Windows Embedded operating systems a statistically insignificant edge over
Embedded Linux (at 30.6% vs. 30.2%). However, Embedded Linux has nearly double
the growth rate, and combining two different Windows systems into a single value is
somewhat misleading. Wind River’s VxWorks embedded OS, the current embedded
software market leader, “trails slightly behind Embedded Linux for current project
use, and VxWorks’ modest gain of just 2.9% for expected use in future projects drops
it to a distant third place position, ending up with less than half the usage rate of the
two neck-and-neck future project usage leaders (Windows Embedded and Embedded
Linux).”

6. An Evans Data survey published in November 2001 found that 48.1% of
international developers and 39.6% of North Americans plan to target most of
their applications to GNU/Linux. In October 2002, they found that 59% of
developers expect to write Linux applications in the next year. The November
2001 edition of the Evans Data International Developer Survey Series reported on in-
depth interviews with over 400 developers representing over 70 countries, and found
that when asked which OS they plan to target with most of their applications next
year, 48.1% of international developers and 39.6% of North Americans stated that
they plan to target most of their applications to GNU/Linux. This is surprising since
only a year earlier less than a third of the international development community was
writing GNU/Linux applications. The survey also found that 37.8% of the
international development community and 33.7% of North American developers have

already written applications for GNU/Linux, and that over half of those surveyed
have enough confidence in GNU/Linux to use it for mission-critical applications.

Evans Data conducted a survey in October 2002. In this survey, they reported “Linux
continues to expand its user base. 59% of survey respondents expect to write Linux
applications in the next year.”

7. An Evans Data survey made public in February 2004 found that 1.1 million
developers in North America were working on OSS/FS projects. Evans Data’s
North American Developer Population Study examined the number of software
developers using various approaches. It found that more than 1.1 million developers
in North America were spending at least some of their time working on Open Source
development projects. That’s an extraordinarily large number of people, and it
doesn’t even account for developers in other countries. Many only develop part-time,
but that many people can develop a lot of software, and having a large number of
people increases the likelihood of helpful insights and innovations in various OSS/FS
projects.

8. A 2004 InformationWeek survey found that 67% of companies use OSS/FS
products, with another 16% expecting to use it in 2005; only 17% have no near-
term plans to support OSS/FS products. The November 1, 2004 InformationWeek
article Open-Source Software Use Joins The Mix by Helen D’Antoni reported the
results from InformationWeek Research, which measured adoption of “open-source
architecture” and found that adoption is widespread. The survey also found other
interesting results: “In general, companies don’t view open-source software as risky.
It often functions alongside [proprietary] and internally developed software, and
because of this acceptance, open-source code is being used more broadly. Its use is
evolving as companies look for cost-effective ways to manage software expenses.” Of
those companies using OSS/FS, they found that 42% of companies implement
production database operations using OSS/FS, with 33% more considering it; only
25% are not using or considering OSS/FS for production database use.

9. A Japanese survey found widespread use and support for GNU/Linux; overall
use of GNU/Linux jumped from 35.5% in 2001 to 64.3% in 2002 of Japanese
corporations, and GNU/Linux was the most popular platform for small projects.
The book Linux White Paper 2003 (published by Impress Corporation) surveys the
use of GNU/Linux in Japan (it is an update to an earlier book, “Linux White Paper
2001-2002”). This is written in Japanese; here is a brief summary of its contents.

The survey has two parts, user and vendor. In “Part I : User enterprise”, they surveyed
729 enterprises that use servers. In “Part II : Vendor enterprise”, they surveyed 276
vendor enterprises who supply server computers, including system integrators,
software developers, IT service suppliers, and hardware resellers. The most
interesting results are those that discuss the use of Linux servers in user enterprises,
the support of Linux servers by vendors, and Linux server adoption in system
integration projects.

First, the use of Linux servers in user enterprises:

System 2002 2001
Linux server 64.3% 35.5%
Windows 2000 Server 59.9% 37.0%
Windows NT Server 64.3% 74.2%
Commercial Unix server 37.7% 31.2%

And specifically, here’s the average use in 2002:

System Ave. units # samples
Linux server 13.4 N=429 (5.3 in 2001)
Windows 2000 Server 24.6 N=380
Windows NT Server 4.5 N=413
Commercial Unix server 6.9 N=233

Linux servers are the fastest growing category from last year. The average units of
server per enterprise increased by 2.5-fold from 5.3 units to 13.4 units.

Second, note the support of GNU/Linux servers by vendors:

System Year 2002 Support
Windows NT/2000 Server 66.7%
Linux server 49.3%
Commercial Unix server 38.0%

This is the rate of vendors that develop or sale products supporting Linux server; note
that Linux is already a major OS when compared with its competitors. The reasons
for supporting Linux server were also surveyed, which turn out to be different than
the reasons in some other counties (for a contrast, see the European FLOSS report):

Increase of importance in the future 44.1%
Requirement from their customers 41.2%
Major OS in their market 38.2%
Free of licence fee 37.5%
Most reasonable OS for their purpose 36.0%
Open source 34.6%
High reliability 27.2%

Third, note the rate of Linux server adoption in system integration projects:

Project Size (Million Yen) Linux Win2000 Unix
 2002 2001 2002 2002

0-3 62.7% 65.7% 53.8% 15.4%
3-10 51.5% 53.7% 56.3% 37.1%
10-50 38.3% 48.9% 55.8% 55.8%
50-100 39.0% 20.0% 45.8% 74.6%
100+ 24.4% 9.1% 51.1% 80.0%

Where 1 Million Yen = $8,000 US. GNU/Linux servers are No.1 (62.5%) in small
projects less than 3,000,000 Yen ($24,000 US), and GNU/Linux has grown in larger
projects more than 50,000,000 Yen ($400,000 US) from 20.0% to 39.0%. In projects
over 100,000,000 Yen ($800,000 US), Linux is adopted by 24.4% of the projects

(mainly as a substitute for proprietary Unix systems). Note that many projects
(especially large ones) use multiple platforms simultaneously, so the values need not
total 100%.

Note that the Japanese Linux white paper 2003 found that 49.3% of IT solution
vendors support Linux in Japan.

10. The European FLOSS study found significant use of OSS/FS. The large report
Free/Libre and Open Source Software (FLOSS): Survey and Study, published in June
2002, examined many issues including the use of OSS/FS. This study found
significant variance in the use of OSS/FS; 43.7% of German establishments reported
using OSS/FS, 31.5% of British establishments reported using OSS/FS, while only
17.7% of Swedish establishments reported using OSS/FS. In addition, they found that
OSS usage rates of larger establishments were larger than smaller establishments, and
that OSS usage rates in the public sector were above average.

11. Microsoft sponsored its own research to “prove” that GNU/Linux is not as
widely used, but this research has been shown to be seriously flawed. Microsoft
sponsored a Gartner Dataquest report claiming only 8.6% of servers shipped in the
U.S. during the third quarter of 2000 were Linux-based. However, it’s worth noting
that Microsoft (as the research sponsor) has every incentive to create low numbers,
and these numbers are quite different from IDC’s research in the same subject. IDC’s
Kusnetzky commented that the likely explanation is that Gartner used a very narrow
definition of “shipped”; he thought the number was “quite reasonable” if it only
surveyed new servers with Linux, “But our research is that this is not how most users
get their Linux. We found that just 10 to 15 percent of Linux adoption comes from
pre-installed machines... for every paid copy of Linux, there is a free copy that can be
replicated 15 times.” Note that it’s quite difficult to buy a new x86 computer without
a Microsoft OS (Microsoft’s contracts with computer makers ensure this), but that
doesn’t mean that these OSes are used. Gartner claimed that it used interviews to
counter this problem, but its final research results (when compared to known facts)
suggest that Gartner did not really counter this effect. For example, Gartner states that
Linux shipments in the supercomputer field were zero. In fact, Linux is widely used
on commodity parallel clusters at many scientific sites, including many high-profile
sites. Many of these systems were assembled in-house, showing that Gartner’s
method of defining a “shipment” does not appear to correlate to working installations.
The Register’s article, “No one’s using Linux” (with its companion article “90%
Windows..”) discusses this further. In short, Microsoft-sponsored research has
reported low numbers, but these numbers are quite suspect.

12. Businesses plan to increase their use of GNU/Linux. A Zona Research study found
that over half of the large enterprise respondents expected increases of up to 25% in
the number of GNU/Linux users in their firm, while nearly 20% expected increases of
over 50%. In small companies, over one third felt that GNU/Linux usage would
expand by 50%. The most important factors identified that drove these decisions were
reliability, lower price, speed of applications, and scalability. Here are the numbers:

Expected GNU/Linux
Use

Small
Business

Midsize
Business

Large
Business Total

50% increase 21.0% 16% 19.0% 19%

10-25% increase 30.5% 42% 56.5% 44%

No growth 45.5% 42% 24.5% 36%

Reduction 3.0% 0% 0% 1%

13. You can see more about this study in “The New Religion: Linux and Open Source”
(ZDNet) and in InfoWorld’s February 5, 2001 article “Linux lights up enterprise: But
concerns loom about OS vendor profitability.”

14. The global top 1000 Internet Service Providers expect GNU/Linux use to
increase by 154%, according to Idaya’s survey conducted January through
March 2001. A survey conducted by Idaya of the global top 1000 ISPs found that
they expected GNU/Linux to grow a further 154% in 2001. Also, almost two thirds
(64%) of ISPs consider the leading open source software meets the standard required
for enterprise level applications, comparable with proprietary software. Idaya
produces OSS/FS software, so keep that in mind as a potential bias.

15. A 2002 European survey found that 49% of CIOs in financial services, retail,
and the public sector expect to be using OSS/FS. OpenForum Europe published in
February 2002 a survey titled Market Opportunity Analysis For Open Source
Software. Over three months CIOs and financial directors in financial services, retail
and public sector were interviewed for this survey. In this survey, 37% of the CIOs
stated that they were already using OSS/FS, and 49% expected to be using OSS/FS in
the future. It is quite likely that even more companies are using OSS/FS but their
CIOs are not aware of it. Perceived benefits cited included decreased costs in general
(54%), lower software license cost (24%), better control over development (22%),
and improved security (22%).

16. IBM found a 30% growth in the number of enterprise-level applications for
GNU/Linux in the six month period ending June 2001. At one time, it was
common to claim that “Not enough applications run under GNU/Linux” for
enterprise-level use. However, IBM found there are over 2,300 GNU/Linux
applications (an increase in 30% over 6 months) available from IBM and the
industry’s top independent software vendors (ISVs). A Special report by Network
Computing on Linux for the Enterprise discusses some of the strengths and
weaknesses of GNU/Linux, and found many positive things to say about GNU/Linux
for enterprise-class applications.

17. Morgan Stanley found significant and growing use of GNU/Linux. They surveyed
225 CIOs on August 2002, and among the respondents, 29% said they owned
GNU/Linux servers, 8% did not but are formally considering buying them, and 17%
of the CIOs said they neither owned nor were formally considering GNU/Linux
servers but that they were informally considering them. The remainder (slightly less
than half, or 46%) noted they didn’t own and weren’t considering GNU/Linux. For
those that have recently purchased new GNU/Linux servers, 31% were adding
capacity, 31% were replacing Windows systems, 24% were replacing Unix and 14%
were replacing other OSes. It’s easier to transition to GNU/Linux from Unix than
from Windows, so it’s intriguing that Windows was being replaced more often than
Unix. CNet news commented on this study with additional commentary about open
source vs. Microsoft.

18. Revenue from sales of GNU/Linux-based server systems increased 90% in the
fourth quarter of 2002 compared to the fourth quarter of 2001. This 90% increase
compared sharply with the 5% increase of server market revenue overall. This data
was determined by Gartner Dataquest, and reported in C|Net.

Sales of GNU/Linux servers increased 63% from 2001 to 2002. This is an increase
from $1.3 billion to $2 billion, according to Gartner.

19. A 2001 survey found that 46.6% of IT professionals were confident that their
organizations could support GNU/Linux, a figure larger than any OS except
Windows. A TechRepublic Research survey titled Benchmarks, Trends, and
Forecasts: Linux Report found that “support for Linux runs surprisingly deep” when
it surveyed IT professionals and asked them how confidently their organizations

could support various OSes. Given Windows’ market dominance on the desktop, it’s
not surprising that most were confident that their organizations could support various
versions of Windows (for Windows NT the figure was 90.6%; for Windows 2000,
81.6%). However, GNU/Linux came in third, at 46.4%; about half of those surveyed
responded that their organizations were already confident in their ability to support
GNU/Linux! This is especially shocking because GNU/Linux beat other well-known
products with longer histories including Unix (42.1%), Novell Netware (39.5%), Sun
Solaris (25.7%), and Apple (13.6%). TechRepublic suggested that there are several
possible reasons for this surprisingly large result:

o GNU/Linux is considered to be a rising technology; many IT professionals
are already studying it and learning how to use it, assuming that it will be a
marketable skill in the near future.

o Many IT professionals already use GNU/Linux at home, giving GNU/Linux
an entree into professional organizations.

o Since GNU/Linux is similar to Unix, IT professionals who are proficient in
Unix can easily pick up GNU/Linux.

TechRepublic suggests that IT executives should inventory their staff’s skill sets,
because they may discover that their organization can already support GNU/Linux if
they aren’t currently using it.

20. Sendmail, an OSS/FS program, is the leading email server. A survey between
2001-09-27 and 2001-10-03 by D.J. Bernstein of one million random IP addresses
successfully connected to 958 SMTP (email) servers (such servers are also called
mail transport agents, or MTAs). Bernstein found that Unix Sendmail had the largest
market share (42% of all email servers), followed by Windows Microsoft Exchange
(18%), Unix qmail (17%), Windows Ipswitch IMail (6%), Unix smap (2%), UNIX
Postfix (formerly VMailer, 2%) and Unix Exim (1%). Note that Bernstein
implements one of Sendmail’s competitors (qmail), so he has a disincentive to
identify Sendmail’s large market share. Qmail is not OSS/FS, because modified
derivatives of Qmail cannot be freely redistributed (without express permission by the
author). Qmail is “source viewable,” so some people are confused into believing that
Qmail is OSS/FS. However, Sendmail, Postfix, and Exim are all OSS/FS. Indeed, not
only is the leading program (Sendmail) OSS/FS, but that OSS/FS program has more
than twice the installations of its nearest competition.

21. A survey in the second quarter of 2000 found that 95% of all reverse-lookup
domain name servers (DNS) used bind, an OSS/FS product. The Internet is built
from many mostly-invisible infrastructure components. This includes domain name
servers (DNSs), which take human-readable machine names (like “yahoo.com”) and
translate them into numeric addresses. Publicly accessible machines also generally
support “reverse lookups”, which convert the numbers back to names; for historical
reasons, this is implemented using the hidden “in-addr.arpa” domain. By surveying
the in-addr domain, you can gain insight into how the whole Internet is supported.
Bill Manning has surveyed the in-addr domain and found that 95% of all name
servers (in 2q2000) performing this important Internet infrastructure task are some
version of “bind.” This includes all of the DNS root servers, which are critical for
keeping the Internet functioning. Bind is an OSS/FS program.

22. A survey in May 2004 found that over 75% of all DNS domains are serviced by
an OSS/FS program. Don Moore’s DNS Server Survey completed May 23, 2004
surved DNS servers. He found that BIND (an OSS/FS program) serviced 70.105% of
all domains, followed by TinyDNS (15.571%), Microsoft DNS Server (6.237%),
MyDNS (2.792%), PowerDNS (1.964%), SimpleDNS Plus (1.25%), unknown
(1.138%), and the Pliant DNS Server (0.277%), with many others trailing. Since
BIND, MyDNS, PowerDNS, and Pliant are all OSS/FS, OSS/FS programs service

75.138% of all DNS domains. The figures are different if you count per-installation
instead of per-domain, but OSS/FS still dominates. Counting per-platform, we have
BIND (72.598%), Microsoft (21.711%), TinyDNS (2.587%), unknown (1.041%),
Simple DNS Plus (0.922%), MyDNS (0.314%), PowerDNS (0.26%). Totalling
BIND, MyDNS, and PowerDNS produces the trivially smaller figure of 73.172%
supported by DNS. This difference in figures shows that about 3 out of 4
organizations choose the OSS/FS BIND when installing a DNS server, and the 1 in 4
who don’t and then choose Microsoft tend to be those supporting fewer domains
(otherwise the Microsoft count of domains would be larger). In any case, given the
critical nature of DNS to the Internet, it’s clear that OSS/FS is a critical part of it.

23. PHP is the web’s #1 Server-side Scripting Language. PHP, a recursive acronym
for “Hypertext Preprocessor”, is an open source server-side scripting language
designed for creating dynamic Web pages (e.g., such as e-commerce). As noted in a
June 3, 2002 article, PHP recently surpassed Microsoft’s ASP to become the most
popular server-side Web scripting technology on the Internet, and was used by over
24% of the sites on the Internet. Of the 37.6 million web sites surveyed worldwide,
PHP is running on over 9 million sites, and over the past two years PHP has averaged
a 6.5% monthly growth rate.

24. OpenSSH is the Internet’s #1 implementation of the SSH security protocol. The
Secure Shell (SSH) protocol is widely used to securely connect to computers and
control them remotely (using either a text or X-Windows graphical interface). On
April 2002, a survey of 2.4 million Internet addresses found that OpenSSH, an
OSS/FS implementation of SSH, was the #1 implementation, with 66.8% of the
market; the proprietary “SSH” had 28.1%, Cisco had 0.4%, and others totaled 4.7%.
You can see general information about the survey, or the specific SSH statistics for
April 2002. It’s also interesting to note that OpenSSH had less than 5% of the market
in the third quarter of 2000, but its use steadily grew. By the fourth quarter of 2001,
over half of all users of the SSH protocol were using OpenSSH, and its market share
has continued to grow since.

25. CMP TSG/Insight found that 41% of application development tools were
OSS/FS, and VARBusiness found 20% of all companies using GNU/Linux.
VARBusiness reported in September 2003 on “The Rise of Linux”. In the article, it
reports a finding of CMP TSG/Insight: 41% of application development tools in use
were OSS/FS, second only to Microsoft (76%) and leading Oracle (35%), IBM
(26%), Sun (21%), and Borland (18%). They also reported their own finding that 20%
of all companies they surveyed were GNU/Linux, presumably less than that of
Microsoft, but twice that of Netware and Unix. Indeed, they note that GNU/Linux has
transformed “from a curiosity to a core competency.”

26. A set of 2003 Gartner studies notes that the TCO of Linux (or OSS/FS) on the
Desktop depends on your situation. Gartner reported that that enterprises that
installed Linux on client desktops would save $80 in hardware acquisition costs and
an average of $74 per user per year on office automation software (assuming that
StarOffice will be purchased instead of Microsoft Office). However, they also note
that “lost productivity stemming from learning curves and compatibility can eat up
direct-cost savings when moving to Linux on the desktop.” A key issue is that many
organizations have built or bought specialized applications that only run on Windows.
Note that these studies primarily examine Linux vs. Windows on the client desktop,
not other OSS/FS deployment options (such as moving to web-based applications
using OSS/FS tools that work with any client operating system, or using OSS/FS
applications on Windows). Gartner concludes that both Windows and GNU/Linux
can have a lower TCO, depending on your circumstance, and that “before migrating
your desktop computers to Linux, take inventory of your business applications and
compare Linux to Windows in terms of total cost of ownership.”

27. MySQL’s market share is growing faster than Windows’. An Evans Data survey
released in January 2004 found that the use of OSS/FS database MySQL grew 30%

over the year, vs. 6% for Microsoft’s SQL Server and Access databases, according to
a survey of 550 developers. Microsoft still has a far greater total market share in the
database development market, but Evans Data reported that OSS/FS’s “price and its
ability to integrate with other software mesh well with the priorities of application
developers” and that “Concerns over stability, expense and how well a database plays
with others are leading a quickly growing number of...companies to seriously
consider and implement an open source database solution.” Evans Data noted that
“We expect this trend to continue as the open source offerings are continually
improved upon.”

28. Internet Explorer is losing marketshare to OSS/FS web browsers. Due to
repeated security problems, in July 2004, Internet Explorer began to measurably lost
market share. According to PC World, IE lost 1% of its market share in a single
month. In the same time period Mozilla-based browser use increased by 26% (when
compared to its previous share). IE was still far more widely used according to this
July 2004 poll (94.73%), but IE hadn’t lost market share in a long time, and it takes a
significant event for that many people to change browsers.

Later studies suggest that IE is continuing to lose significant market share, especially
among leading-edge indicators such as the technically savvy and web developers.
CNN found that among its CNET News.com readers, site visitors with OSS/FS
browsers jumped up from 8% in January 2004 to 18% by September 2004. Statistics
for Engadget.com, which has a technical audience, found that as of September 2004,
only 57% used a MS browser and Firefox rapidly rose to 18%; w3schools (which
explains web development) found a dramatic shift from July 2003 to September 2004
(more stats here), with IE dropping from 87.2% to 74.8% while Gecko-based
browsers (including Netscape 7, Mozilla, and Firefox) rose from 7.2% to 19%. Chuck
Upsdell has combined many data sources and estimates that, as of September 2004,
IE has decreased from 94% to 84%, as users switch to other browser families (mainly
Gecko), and that this downward trend likely to continue. Pundits such as PC
Magazine’s John C. Dvorak reported even more dramatic slides, with IE dropping to
50% share. By November 1, 2004, Ziff Davis revealed that IE had lost nearly another
percent of the market in only 7 weeks. All of this is in spite of the some non-IE
browsers will lie and use the same identification string as Internet Explorer, even
though they aren’t. Thus, these studies may be understating the actual share of non-IE
browsers. And all of this is before the November 9, 2004 official initial release of the
OSS/FS web browser Firefox. Grassroots efforts of the Spread Firefox marketing
group and others seem to have been very effective at convincing people to try out
Firefox.

Perhaps the simplest argument that GNU/Linux will have a significant market share is that
Sun is modifying its Solaris product to run GNU/Linux applications, and IBM has already
announced that GNU/Linux will be the successor of IBM’s own AIX.

3. Reliability
There are a lot of anecdotal stories that OSS/FS is more reliable, but finally there is
quantitative data confirming that mature OSS/FS programs are often more reliable:

1. Equivalent OSS/FS applications are more reliable, according to the Fuzz study.
The paper “Fuzz Revisited” paper measured reliability by feeding programs random
characters and determining which ones resisted crashing and freeze-ups. This
approach is unlikely to find subtle failures, yet the study authors found that their
approach still manages to find many errors in production software and is a useful tool

for finding software flaws. What’s more, this approach is extremely fair and can
broadly applied to any program, making it possible to compare different programs
fairly.

OSS/FS had higher reliability by this measure. It states in section 2.3.1 that:

It is also interesting to compare results of testing the commercial systems to the
results from testing “freeware” GNU and Linux. The seven commercial systems in
the 1995 study have an average failure rate of 23%, while Linux has a failure rate of
9% and the GNU utilities have a failure rate of only 6%. It is reasonable to ask why a
globally scattered group of programmers, with no formal testing support or software
engineering standards can produce code that is more reliable (at least, by our
measure) than commercially produced code. Even if you consider only the utilities
that were available from GNU or Linux, the failure rates for these two systems are
better than the other systems.

There is evidence that Windows applications have similar reliability to the proprietary
Unix software (e.g., less reliable than the OSS/FS software). A later paper, “An
Empirical Study of the Robustness of Windows NT Applications Using Random
Testing”, found that with Windows NT GUI applications, they could crash 21% of
the applications they tested, hang an additional 24% of the applications, and could
crash or hang all the tested applications when subjecting them to random Win32
messages. Thus, there’s no evidence that proprietary Windows software is more
reliable than OSS/FS by this measure. Yes, Windows has progressed since that time -
but so have the OSS/FS programs.

Although this experiment was done in 1995, nothing that’s happened since suggests
that proprietary software has become much better than OSS/FS programs since then.
Indeed, since 1995 there’s been an increased interest and participation in OSS/FS,
resulting in far more “eyeballs” examining and improving the reliability of OSS/FS
programs.

The fuzz paper’s authors found that proprietary software vendors generally didn’t fix
the problems identified in an earlier version of their paper, and found that concerning.
In contrast, Scott Maxwell led an effort to remove every flaw identified in the
OSS/FS software in the 1995 fuzz paper, and eventually fixed every flaw. Thus, the
OSS/FS community’s response shows why, at least in part, OSS/FS programs have
such an edge in reliability; if problems are found, they’re often fixed. Even more
intriguingly, the person who spearheaded ensuring that these problems were fixed
wasn’t an original developer of the programs - a situation only possible with OSS/FS.

Now be careful: OSS/FS is not magic pixie dust; beta software of any kind is still
buggy! However, the 1995 experiment measured mature OSS/FS to mature
proprietary software, and the OSS/FS software was more reliable under this measure.

2. IBM studies found GNU/Linux highly reliable. IBM ran a series of extremely
stressful tests for 30 and 60 days, and found that the Linux kernel and other core OS
components -- including libraries, device drivers, file systems, networking, IPC, and
memory management -- operated consistently and completed all the expected
durations of runs with zero critical system failures. Linux system performance was
not degraded during the long duration of the run, the Linux kernel properly scaled to
use hardware resources (CPU, memory, disk) on SMP systems, the Linux system
handled continuous full CPU load (over 99%) and high memory stress well, and the
Linux system handled overloaded circumstances correctly. IBM declared that these

tests demonstrate that “the Linux kernel and other core OS components are reliable
and stable ... and can provide a robust, enterprise-level environment for customers
over long periods of time.”

3. GNU/Linux is more reliable than Windows NT, according to a 10-month ZDnet
experiment. ZDnet ran a 10-month test for reliability to compare Caldera Systems
OpenLinux, Red Hat Linux, and Microsoft’s Windows NT Server 4.0 with Service
Pack 3. All three used identical (single-CPU) hardware, and network requests were
sent to each server in parallel for standard Internet, file, and print services. The result:
NT crashed an average of once every six weeks, each taking about 30 minutes to fix;
that’s not bad, but neither GNU/Linux server ever went down. This ZDnet article also
does a good job of identifying GNU/Linux weaknesses (e.g., desktop applications and
massive SMP). Hopefully Windows has made improvements since this study - but the
OSS/FS have certainly made improvements as well.

4. GNU/Linux is more reliable than Windows NT, according to a one-year Bloor
Research experiment. Bloor Research had both OSes running on relatively old
Pentium machines. During the one year test, GNU/Linux crashed once due to a
hardware fault (disk problems), which took 4 hours to fix, giving it a measured
availability of 99.95 percent. Windows NT crashed 68 times, caused by hardware
problems (disk), memory (26 times), file management (8 times), and various odd
problems (33 times). All this took 65 hours to fix, giving an availability of 99.26
percent. It’s intriguing that the only GNU/Linux problem and many of the Windows
problems were hardware-related; it could be argued that the Windows hardware was
worse, or it could be argued that GNU/Linux did a better job of avoiding and
containing hardware failures. The file management failure is due to Windows, and the
odd problems appear due to Windows too, indicating that GNU/Linux is far more
reliable than Windows. GNet summarized this as saying “the winner here is clearly
Linux.”

5. A study by Reasoning found that the Linux kernel’s implementation of the
TCP/IP Internet protocol stack had fewer defects than the equivalent stacks of
several proprietary general-purpose operating systems, and equalled the best of
the embedded operating systems. As noted in their press release and C|Net,
Reasoning’s study compared six implementations of TCP/IP, the fundamental
protocols underlying the Internet. Besides the Linux kernel, three of the
implementations were part of commercial general-purpose operating systems, and
two were embedded in commercial telecommunications equipment. The Linux kernel
primarily used as the kernel of a general-purpose operating system; it would be
reasonable to expect that the embedded operating systems would have better
reliability because of the need for reliability in that market. The study was not
commissioned by any of the GNU/Linux vendors or companies who might be
competing with GNU/Linux, and thus should be free of bias.

The company used automated tools to look five kinds of defects in code: Memory
leaks, null pointer dereferences, bad deallocations, out of bounds array access and
uninitialized variables. Reasoning found 8 defects in 81,852 lines of Linux kernel
source lines of code (SLOC), resulting in a defect density rate of 0.1 defects per
KSLOC. In contrast, the three proprietary general-purpose operating systems (two of
them versions of Unix) had between 0.6 and 0.7 defects/KSLOC; thus the Linux
kernel had a smaller defect rate than all the competing general-purpose operating
systems examined. The rates of the two embedded operating systems were 0.1 and 0.3
defects/KSLOC, thus, the Linux kernel had an defect rate better than one embedded
operating system, and equivalent to another.

One issue is that the tool detects issues that may not be true problems. For example,
of those 8 defects, one was clearly a bug and had been separately detected and fixed

by the developers, and 4 defects clearly had no effect on the running code. None of
the defects found were security flaws. To counter this, they also tracked which
problems were repaired by the developers of the various products. The Linux kernel
did quite well by this measure as well: the Linux kernel had 1 repaired defect out of
81.9 KSLOC, while the proprietary implementations had 235 repaired defects out of
568 KSLOC. This means the Linux kernel had a repair defect rate of 0.013
defects/KSLOC, while the proprietary implementations had a repair defect rate of
0.41 defects/KSLOC.

CEO Scott Trappe explained this result by noting that the open source model
encourages several behaviors that are uncommon in the development of commercial
code. First, many users don’t just report bugs, as they would do with [proprietary]
software, but actually track them down to their root causes and fix them. Second,
many developers are reviewing each other’s code, if only because it is important to
understand code before it can be changed or extended. It has long been known that
peer review is the most effective way to find defects. Third, the open source model
seems to encourage a meritocracy, in which programmers organize themselves
around a project based on their contributions. The most effective programmers write
the most crucial code, review the contributions of others, and decide which of these
contributions make it into the next release. Fourth, open source projects don’t face the
same type of resource and time pressures that [proprietary] projects do. Open source
projects are rarely developed against a fixed timeline, affording more opportunity for
peer review and extensive beta testing before release.

This certainly doesn’t prove that OSS/FS will always be the highest quality, but it
clearly shows that OSS/FS can be of high quality.

6. A similar study by Reasoning found that the MySQL database (a leading
OSS/FS database) had fewer defects than a set of 200 proprietary programs used
for comparison. In a similar manner to the previous study, on December 15, 2003,
Reasoning announced its analysis results comparing MySQL with various proprietary
programs. MySQL had found 21 software defects in 236,000 source lines of code
(SLOC), producing a defect density of 0.09 defects/KSLOC. Using a set of 200 recent
proprietary projects (totalling 35 million SLOC), the same tools found a defect rate of
0.57 defects/KSLOC -- over six times the error rate. Again, not all defects are found
by their tool, and this certainly doesn’t prove that OSS/FS will always be the highest
quality, but it clearly shows that OSS/FS can be of high quality.

7. Sites using Microsoft’s IIS web serving software have over double the time
offline (on average) than sites using the Apache software, according to a 3-month
Swiss evaluation. These are the results of Syscontrol AG’s analysis of website
uptime (announced February 7, 2000) They measured over 100 popular Swiss web
sites over a three-month period, checking from 4 different locations every 5 minutes
(it’d be interesting to see what a larger sample would find!). You can see their report
(in German), or a Babelfish (machine) translation of the report. Here’s their set of
published data on “average down-time (in hours in that month) for each type of
server”, plus a 3-month average that I’ve computed:

Downtime Apache Microsoft Netscape Other

September 5.21 10.41 3.85 8.72

October 2.66 8.39 2.80 12.05

November 1.83 14.28 3.39 6.85

Average 3.23 11.03 3.35 9.21

8. It’s hard not to notice that Apache (the OSS web server) had the best results over the
three-month average (and with better results over time, too). Indeed, Apache’s worst
month was better than Microsoft’s best month. The difference between Netscape and
Apache is statistically insignificant - but this still shows that the freely-available
OSS/FS solution (Apache) has a reliability at least as good as the most reliable
proprietary solution.

9. The report does state that this might not be solely the fault of the software’s quality,
and in particular it noted that several Microsoft IIS sites had short interruptions at the
same time each day (suggesting regular restarts). However, this still begs the question
- why did the IIS sites require so many regular restarts compared to the Apache sites?
Every outage, even if preplanned, results in a service loss (and for e-commerce sites,
a potential loss of sales). Presumably, IIS site owners who perform periodic restarts
do so because they believe that doing so will improve their IIS systems’ overall
reliability. Thus, even with pre-emptive efforts to keep the IIS systems reliable, the
IIS systems are less reliable than the Apache-based systems which simply do not
appear to require constant restarting.

10. 80% of the top ten most reliable hosting providers ran OSS/FS, according to
Netcraft’s May 2004 survey Netcraft’s May 2004 survey of the top ten most reliable
hosting providers found 4 running GNU/Linux, 4 running FreeBSD, and only 2
running Microsoft Windows.

11. OSS/FS did very well in a separate uptime study by Netcraft; as of August 3,
2001, of the 50 sites with the highest uptimes, 92% use Apache and 50% run on
OSS/FS OSes. Netcraft keeps a track of the 50 often-requested sites with the longest
uptimes at http://uptime.netcraft.com. Looking at the August 3, 2001 uptime report, I
found that 92% (46/50) of the sites use Apache; one site’s web server was unknown,
and three others were not Apache. Of those three, only one reported to be Microsoft
IIS, and that one instance is suspicious because its reported OS is BSD/OS (this
apparent inconsistency can be explained in many ways, e.g., perhaps there is a front-
end BSD/OS system that “masks” the IIS web site, or perhaps the web server is lying
about its type to confuse attackers). In this snapshot, 50% (25/50) ran on an OSS/FS
OS, and only Unix-like OSes had these large uptimes (no Windows systems were
reported as having the best uptimes).

As with all surveys, this one has weaknesses, as discussed in Netcraft’s Uptime FAQ.
Their techniques for identifying web server and OSes can be fooled. Only systems for
which Netcraft was sent many requests were included in the survey (so it’s not “every
site in the world”). Any site that is requested through the “what’s that site running”
query form at Netcraft.com is added to the set of sites that are routinely sampled;
Netcraft doesn’t routinely monitor all 22 million sites it knows of for performance
reasons. Many OSes don’t provide uptime information and thus can’t be included;
this includes AIX, AS/400, Compaq Tru64, DG/UX, MacOS, NetWare,
NT3/Windows 95, NT4/Windows 98, OS/2, OS/390, SCO UNIX, Sony NEWS-OS,
SunOS 4, and VM. Thus, this uptime counter can only include systems running on
BSD/OS, FreeBSD (but not the default configuration in versions 3 and later), recent
versions of HP-UX, IRIX, GNU/Linux 2.1 kernel and later (except on Alpha
processor based systems), MacOS X, recent versions of NetBSD/OpenBSD, Solaris
2.6 and later, and Windows 2000. Note that Windows NT systems cannot be included
in this survey (because their uptimes couldn’t be counted). Windows 2000 systems’s
data are included in the source source for this survey, but they have a different
problem. Windows 2000 had little hope to be included in the August 2001 list,
because the 50th system in the list had an uptime of 661 days, and Windows 2000 had
only been launched about 17 months (about 510 days) earlier. Note that HP-UX,
GNU/Linux (usually), Solaris and recent releases of FreeBSD cycle back to zero after
497 days, exactly as if the machine had been rebooted at that precise point. Thus it is
not possible to see an HP-UX, GNU/Linux (usually), or Solaris system with an

uptime measurement above 497 days, and in fact their uptimes can be misleading
(they may be up for a long time, yet not show it). There is yet one other weakness: if
a computer switches operating systems later, the long uptime is credited to the new
OS. Still, this survey does compare Windows 2000, GNU/Linux (up to 497 days
usually), FreeBSD, and several other OSes, and OSS/FS does quite well.

It could be argued that perhaps systems on the Internet that haven’t been rebooted for
such a long time might be insignificant, half-forgotten, systems. For example, it’s
possible that security patches aren’t being regularly applied, so such long uptimes are
not necessarily good things. However, a counter-argument is that Unix and Linux
systems don’t need to be rebooted as often for a security update, and this is a valuable
attribute for a system to have. Even if you accepted that unproven claim, it’s certainly
true that there are half-forgotten Windows systems, too, and they didn’t do so well.
Also, only systems someone specifically asked for information about were included
in the uptime survey, which would limit the number of insignificant or half-forgotten
systems.

At the very least, Unix and Linux are able to quantitatively demonstrate longer
uptimes than their Windows competitors can, so Unix and Linux have significantly
better evidence of their reliability than Windows.

12. An in-depth analysis (published in the Communications of the ACM) found good
evidence that OSS/FS code quality appears to be at least equal and sometimes
better than proprietary software. The article “Open Source Software Development
Should Strive for Even Greater Code Maintainability” by Ioannis Samoladas, Ioannis
Stamelos, Lefteris Angelis, and Apostolos Oikonomou, was published by the highly-
respected “Communications of the ACM” in October 2004 (pp. 83-87). They studied
almost 6 million lines of code, tracking several programs over time, using the
maintainability index (chosen by the Software Engineering Institute as the most
suitable tool for measuring the maintainability of systems). Using their
measurements, they concluded that OSS/FS “code quality appears to be at least equal
and sometimes better than the quality of [closed source software] code implementing
the same functionality.” They conjectured that this “may be due to the motivation of
skilled OSS programmers...” OSS/FS is no panacea; they also found that OSS/FS
“code quality seems to suffer from the very same problems that have been observed
in [closed source software] projects. Maintainability deterioration over time is a
typical phenomenon... it is reasonable to expect similar beharior from the OSS
projects as they age.” But equal and sometimes better isn’t a bad thing at all.

13. A detailed study of two large programs (the Linux kernel and the Mozilla web
browser) found evidence that OSS/FS development processes produce more
modular designs. Harvard Business School’s “Exploring the Structure of Complex
Software Designs: An Empirical Study of Open Source and Proprietary Code” by
Alan MacCormack, John Rusnak, and Carliss Baldwin (Working Paper Number 05-
016) reports research results that worked to see if OSS/FS programs tended to have
better modularity than proprietary programs. It’s generally accepted that there are
important benefits to greater modularity, in particular, a more modular system tends
to be more reliable and easier to change over time.

They examined the Linux kernel (developed as an OSS/FS product), the original
Mozilla web browser (developed as a proprietary product), and then the evolution of
Mozilla after it became OSS/FS. They found “significant differences in their
designs”; Linux possessed a more modular architecture than the original proprietary
Mozilla, and the redesigned OSS/FS Mozilla had a more modular structure than both.

To measure design modularity, they used a technique called Design Structure
Matrices (DSMs) that identified dependencies between different design elements (in
this case, between files, where calling a function/method of another file creates a
dependency). They used two different measures using DSMs, which produced
agreeing results.

The first measure they computed is a simple one, called “change cost”. This measures
the percentage of elements affected, on average, when a change is made to one
element in the system. A smaller value is better, since as as this value gets larger, it’s
becomes increasingly likely that a change made will impact a larger number of other
components and have unintended consequences. This measure isn’t that sensitive to
the size of a system (see their exhibit 7), though obviously as a program gets larger
that percentage implies a larger number of components. When Mozilla was developed
as a proprietary product, and initially released as OSS/FS, it had the large value of
17.35%. This means that if a given file is changed, on average, 17.35% of other files
in system depend (directly or indirectly) on that file. After gaining some familiarity
with the code, the OSS/FS developers decided to improve its design between 1998-
10-08 and 1998-12-11. Once the redesign was complete, the change cost dramatically
decreased down to 2.78%, as you can see:

Program Change Cost

Mozilla-1998-04-08 17.35%

Mozilla-1998-10-08 18.00%

Mozilla-1998-12-11 2.78%

Mozilla-1999 3.80%

Linux-2.1.88 3.72%

Linux-2.1.105 5.16%

Change cost is a fairly crude measure, though; it doesn’t take into account the amount
of dependency (measured, say, as the number of calls from one file to another), and it
doesn’t take clustering into account (a good design should minimize the
communication between clusters more than communication in general). Thus, they
computed “coordination cost,” an estimated cost of communicating information
between agents developing each cluster. This measure is strongly dependent on the
size of the system - after all, it’s easier to coordinate smaller projects. Thus, to use
this as a measure of the quality of a design compared to another project, the sizes
must be similar (in this case, by the number of files). The numbers are unitless, but
smaller costs are better. The researchers identified different circumstances with
similar sizes, so that the numbers could be compared. The following table compares
Mozilla 1998-04-08 (built almost entirely by proprietary means) and Mozilla 1998-
12-11 (just after the redesign by OSS/FS developers) with Linux 2.1.105 (built by
OSS/FS processes):

 Linux 2.1.105 Mozilla 1998-04-08 Mozilla 1998-12-11

Number of Source files 1678 1684 1508

Coordination Cost 20,918,992 30,537,703 10,234,903

The paper computes numbers for several other cases, but yielding the same
conclusion.

It’d be easy to argue that kernels are fundamentally different than web browsers, but
that can’t be the right explanation. When Mozilla was released to the OSS/FS
community, it was far worse by these measures, and the OSS/FS community actively
and consciously worked to improve its modularity. The browser soon ended up with a
significant and measurable improvement in modularity, better than the kernel’s,
without an obvious complete loss of functionality.

It appears that at least part of the explanation is in the OSS/FS development
environment. OSS/FS development is normally distributed worldwide, with little
opportunity for face-to-fact communication, and with many people contributing only
part-time. Thus, “this mode of organization was only possible given that the design
structure, and specifically, the partitioning of design tasks, was loosely-coupled.” In
addition, the leadership of an OSS/FS project is incentivized to make architectural
decisions that lead to modularity, since if they didn’t, they wouldn’t be able to attract
enough co-developers: “Without such an architecture, there was little hope that other
contributors could a) understand enough of the design to contribute in a meaningful
way, and b) develop new features or fix existing defects without affecting many other
parts of the design.” Although not discussed in the paper, cultural norms may also be
a factor; since the source code is reviewed by others, developers appear to actively
disparage poor designs and praise highly modular designs.

Again, this does not mean that OSS/FS programs are always more modular; but it
does suggest that there is pressure to make modular programs in an OSS/FS project.

Damien Challet and Yann Le Du of the University of Oxford have written a paper titled
Closed source versus open source in a model of software bug dynamics. In this paper they
develop a model of software bug dynamics where users, programmers and maintainers
interact through a given program. They then analyzed the model, and found that all other
things being equal (such as number of users, programmers, and quality of programmers),
“debugging in open source projects is always faster than in closed source projects.”

Of course, there are many anecdotes about Windows reliability vs. Unix. For example, the
Navy’s “Smart Ship” program caused a complete failure of the USS Yorktown ship in
September 1997. Whistle-blower Anthony DiGiorgio stated that Windows is “the source of
the Yorktown’s computer problems.” Ron Redman, deputy technical director of the Fleet
Introduction Division of the Aegis Program Executive Office, said “there have been
numerous software failures associated with [Windows] NT aboard the Yorktown.” Redman
also said “Because of politics, some things are being forced on us that without political
pressure we might not do, like Windows NT... If it were up to me I probably would not have
used Windows NT in this particular application. If we used Unix, we would have a system
that has less of a tendency to go down.”

One problem with reliability measures is that it takes a long time to gather data on reliability
in real-life circumstances. Thus, there’s more data comparing older Windows editions to older
GNU/Linux editions. The key is that these comparisons are fair, because they compare
contemporaneous products. The available evidence suggests that OSS/FS has a significant
edge in reliability, at least in many circumstances.

4. Performance

Comparing GNU/Linux and Microsoft Windows performance on equivalent hardware has a
history of contentious claims and different results based on different assumptions. OSS/FS
has at least shown that it’s often competitive, and in many circumstances it beats the
competition.

Performance benchmarks are very sensitive to the assumptions and environment, so the best
benchmark is one you set up yourself to model your intended environment. Failing that, you
should use unbiased measures, because it’s so easy to create biased measures.

First, here are a few recent studies suggesting that some OSS/FS systems beat proprietary
competitors in at least some circumstances:

1. In 2002, TPC-C database measures found that a Linux based system was faster
than a Windows 2000 based system. More specifically, an HP ProLiant DL580 with
32 Intel Xeon 900MHz CPUs running Oracle 9i R2 Enterprise edition ran faster
running on a stock Red Hat Linux Advanced Server than on Microsoft Windows
2000 Advanced Server. You can see the Linux and Windows reports; note that HP
did not modify the Linux kernel to get these results.

2. PC Magazine’s November 2001 performance tests for file servers found that
Linux with Samba significantly outperformed Windows 2000. Their article
Performance Tests: File Server Throughput and Response Times found that Linux
with Samba significantly outperformed Windows 2000 Server when used as a file
server for Microsoft’s own network file protocols. This was true regardless of the
number of simultaneous clients (they tested a range up to 30 clients), and it was true
on the whole range on computers they used (Pentium II/233MHz with 128MiB RAM,
Pentium III/550MHz with 256MiB RAM, and Pentium III/1GHz with 512MiB RAM,
where MiB is 2^20 bytes). Indeed, as the machines became more capable the absolute
difference grew more pronounced. On the fastest hardware while handling largest
number of clients, GNU/Linux’s throughput was about 130 MB/sec vs. Windows’ 78
MB/sec (GNU/Linux was 78% faster).

3. PC Magazine tested file server performance again in April 2002; Linux with
Samba beat Windows 2000 again, but Samba then surpassed Windows 2000 by
about 100% and can handle 4 times as many clients. PC Magazine published
another comparison of Samba and Windows (a summary is available electronically as
“Samba runs rings around Win2000.”). They noted that the later Samba software
surpasses the performance of Windows 2000 by about 100 percent under benchmark
tests, and found that Linux and Samba can handle four times as many client systems
as Windows 2000 before performance begins to drop off. Jay White, IT manager at
electronics firm BF Group, said that Samba is one of the most useful pieces of server
software available for a mixed Windows and Linux environment. “Our Samba server
has been online for 394 days so far. The total cost is the hardware plus 30 minutes of
my time each year,” he said. Mark Twells, IT coordinator at a large education facility,
said, “We run six Samba servers on a variety of hardware [and] we have around 1,000
users.”; this certainly excellent evidence of Samba’s utility.

4. In performance tests by Sys Admin magazine, GNU/Linux beat Solaris (on
Intel), Windows 2000, and FreeBSD. The article “Which OS is Fastest for High-
Performance Network Applications?” in the July 2001 edition of Sys Admin magazine
examined high-performance architectures and found that GNU/Linux beat its
competition when compared with Solaris (on Intel), FreeBSD (an OSS/FS system),
and Windows 2000. They intentionally ran the systems “out of the box” (untuned),
except for increasing the number of simultaneous TCP/IP connections (which is
necessary for testing multi-threaded and asynchronous applications). They used the
latest versions of OSes and the exact same machine. They reported (by OS) the
results of two different performance tests.

The FreeBSD developers complained about these tests, noting that FreeBSD by
default emphasizes reliability (not speed) and that they expected anyone with a
significant performance need would do some tuning first. Thus, Sys Admin’s re-did
the tests for FreeBSD after tuning FreeBSD. One change they made was switching to
“asynchronous” mounting, which makes a system faster (though it increases the risk
of data loss in a power failure) - this is the GNU/Linux default and easy to change in
FreeBSD, so this was a very small and reasonable modification. However, they also
made many other changes, for example, they found and compiled in 17 FreeBSD
kernel patches and used various tuning commands. The other OSes weren’t given the
chance to “tune” like this, so comparing untuned OSes to a tuned FreeBSD isn’t
really fair.

In any case, here are their two performance tests:

1. Their “real-world” test measured how quickly large quantities of email could
be sent using their email delivery server (MailEngine). Up to 100
simultaneous sends there was no difference, but as the number increased the
systems began showing significant differences in their hourly email delivery
speed. By 500 simultaneous sends GNU/Linux was clearly faster than all
except FreeBSD-tuned, and GNU/Linux remained at the top. FreeBSD-tuned
had similar performance to GNU/Linux when running 1000 or less
simultaneous sends, but FreeBSD-tuned peaked around 1000-1500
simultaneous connections with a steady decline not suffered by GNU/Linux,
and FreeBSD-tuned had trouble going beyond 3000 simultaneous
connections. By 1500 simultaneous sends, GNU/Linux was sending 1.3
million emails/hour, while Solaris managed approximately 1 million, and
Windows 2000 and FreeBSD-untuned were around 0.9 million.

2. Their “disk I/O test” created, wrote, and read back 10,000 identically-sized
files in one directory, varying the size of the file instances. Here Solaris was
the slowest, with FreeBSD-untuned the second-slowest. FreeBSD-tuned,
Windows 2000, and GNU/Linux had similar speeds at the smaller file sizes
(in some cases FreeBSD-tuned was faster, e.g., 8k and 16k file size), but
when the file sizes got to 64k to 128k the OSes began to show significant
performance differences; GNU/Linux was the fastest, then Windows 2000,
then FreeBSD. At 128k, FreeBSD was 16% worse than Windows 2000, and
39% worse than GNU/Linux; all were faster than FreeBSD-untuned and
Solaris. When totaling these times across file sizes, the results were
GNU/Linux: 542 seconds, Windows 2000: 613 seconds, FreeBSD-tuned: 630
seconds, FreeBSD-untuned: 2398 seconds, and Solaris: 3990 seconds.

5. GNU/Linux with TUX has produced better SPEC values than Windows/IIS in
several cases, even when given inferior drive configurations. One organization that
tries to develop unbiased benchmarks is the SPEC Consortium, which develops and
maintains a whole series of benchmarks. We can compare Microsoft Windows versus
GNU/Linux by comparing SPECweb99 results (which measure web server
performance) on identical hardware if both have undergone the same amount of
performance optimization effort. Alas, things are not so simple; rarely are the same
basic hardware platforms tested with both OSes, and even when that occurs, as of
July 13, 2001 no exactly identical configurations have been tested (they differ in ways
such as using a different number of hard drives, or including some faster hard drives).
Using all results available by July 13, 2001, there were three hardware configurations,
all from Dell, which ran both GNU/Linux (using the TUX web server/accelerator)
and Windows (using IIS) on exactly the same underlying hardware. Here are the
SPECweb99 results as of July 13, 2001 (larger is better), noting configuration
differences:

System Windows SPEC Result Linux SPEC
Result

Dell PowerEdge
4400/800, 2 800MHz
Pentium III Xeon

1060 (IIS 5.0, 1 network controller)
2200 (TUX 1.0, 2
network
controllers)

Dell PowerEdge
6400/700, 4 700MHz
Pentium III Xeon

1598 (IIS 5.0, 7 9GB 10KRPM drives)
4200 (TUX 1.0, 5
9GB 10KRPM
drives)

Dell PowerEdge
8450/700, 8 700MHz
Pentium III Xeon

7300/NC (IIS 5.0, 1 9Gb 10KRPM and 8
16Gb 15KRPM drives) then 8001 (IIS
5.0, 7 9Gb 10KRPM and 1 18Gb
15KRPM drive)

7500 (TUX 2.0, 5
9Gb 10KRPM
drives)

6. The first row (the PowerEdge 4400/800) doesn’t really prove anything. The IIS
system has lower performance, but it only had one network controller and the TUX
system has two - so while the TUX system had better performance, that could simply
be because it had two network connections it could use.

7. The second entry (the PowerEdge 6400/700) certainly suggests that GNU/Linux plus
TUX really is much better - the IIS system had two more disk drives available to it
(which should increase performance), but the TUX system had over twice the IIS
system’s performance.

8. The last entry for the PowerEdge 8450/700 is even more complex. First, the drives
are different - the IIS systems had at least one drive that revolved more quickly than
the TUX systems (which should give IIS higher performance overall, since the
transfer speed is almost certainly higher). Also, there were more disk drives (which
again should give IIS still higher performance). When I originally put this table
together showing all data publicly available in April 2001 (covering the third quarter
of 1999 through the first quarter of 2001), IIS 5.0 (on an 8-processor Dell PowerEdge
8450/700) had a SPECweb99 value of 7300. Since that time, Microsoft changed the
availability of Microsoft SWC 3.0, and by SPECweb99 rules, this means that those
test results are “not compliant” (NC). This is subtle; it’s not that the test itself was
invalid, it’s that Microsoft changed what was available and used the SPEC
Consortium’s own rules to invalidate a test (possibly because the test results were
undesirable to Microsoft). A retest then occurred, with yet another disk drive
configuration, at which point IIS produced a value of 8001. However, both of these
figures are on clearly better hardware - and in one circumstance the better hardware
didn’t do better.

9. Thus, in these configurations the GNU/Linux plus TUX system was given inferior
hardware yet still sometimes won on performance. Since other factors may be
involved, it’s hard to judge - there are pathological situations where “better hardware”
can have worse performance, or there may be another factor not reported that had a
more significant effect. Hopefully in the future there will be many head-to-head tests
in a variety of identical configurations.

10. Note that TUX is intended to be used as a “web accelerator” for many circumstances,
where it rapidly handles simple requests and then passes more complex queries to
another server (usually Apache). I’ve quoted the TUX figures because they’re the
recent performance figures I have available. As of this time I have no SPECweb99
figures or other recent performance measures for Apache on GNU/Linux, or for
Apache and TUX together; I also don’t have TUX reliability figures. I expect that
such measures will appear in the future.

11. Low-level benchmarks by IBM found that GNU/Linux had better performance
than Windows for pipes (an input/output mechanism), and also process and

thread creation. Ed Bradford (manager of Microsoft Premier Support for IBM
Software group) published in October 2001 the study Pipes in Linux, Windows 2000,
and Windows XP. In this study he examined the the performance of pipes, a common
low-level mechanism for communicating between program processes. He found the
pipes in Red Hat 7.1 (with Linux kernel version 2.4.2) had a peak I/O rate of around
700 MB/sec, with a steady state at near 100 MB/sec for very large block sizes. In
contrast, Windows 2000 peaked at 500 MB/sec, with a large block steady state of 80
MB/sec. Windows XP Professional (evaluation version) was especially disappointing;
its peak I/O rate was only 120 MB/sec, with a stead state of 80 MB/sec, all on the
same platform and all running a GUI.

In February 2002 he published Managing processes and threads, in which he
compared the performance of Red Hat Linux 7.2, Windows 2000 Advanced Server
(”Win2K”), and Windows XP Professional (”WinXP”), all on a Thinkpad 600X with
320MiB of memory. Linux managed to create over 10,000 threads/second, while
Win2K didn’t quite manage 5,000 threads/second and WinXP only created 6,000
threads/second. In process creation, Linux managed 330 processes/second, while
Win2K managed less than 200 processes/second and WinXP less than 160
processes/second.

12. eWeek found in its tests that the OSS/FS program MySQL was quite
comparable to the proprietary Oracle database program, and the pair
outperformed other proprietary programs. eWeek Labs/PC Labs compared
several database packages and released the results on February 25, 2002. Comparable
performance measures of database programs are actually quite rare. As they note,
“database vendors routinely use no-benchmarking clauses in their license agreements
to block publication of benchmarks of which they do not approve.” Indeed, to their
knowledge, this is the first time a computer publication has published database
benchmark results tested on the same hardware since PC Magazine did so in October
1993 (almost 9 years earlier). However, they took the risk and published the results
examining five server databases: IBM’s DB2 7.2 with FixPack 5, Microsoft Corp.’s
SQL Server 2000 Enterprise Edition with Service Pack 2, MySQL AB’s MySQL
4.0.1 Max, Oracle Corp.’s Oracle9i Enterprise Edition 9.0.1.1.1, and Sybase Inc.’s
ASE (Adaptive Server Enterprise) 12.5.0.1. Their goal was to create a level playing
field to determine which database performed best when used with a Java-based
application server.

The results? They found that overall Oracle9i and MySQL had the best performance
and scalability; Oracle9i was slightly ahead of MySQL in most cases, but Oracle
costs far more. “ASE, DB2, Oracle9i and MySQL finished in a dead heat up to about
550 Web users. At this point, ASE’s performance leveled off at 500 pages per second,
about 100 pages per second less than Oracle9i’s and MySQL’s leveling-off point of
about 600 pages per second. DB2’s performance dropped substantially, leveling off at
200 pages per second under high loads. Due to its significant JDBC (Java Database
Connectivity) driver problems, Microsoft’s SQL Server was limited to about 200
pages per second for the entire test.”

Naturally, “Manual tuning makes a huge difference with databases - in general, our
final measured throughput was twice as fast as our initial out-of-the-box test runs.” In
this case, they found that “SQL Server and MySQL were the easiest to tune, and
Oracle9i was the most difficult because it has so many separate memory caches that
can be adjusted.”

MySQL also demonstrated some significant innovation. Its performance was due
primarily to its “query cache”, a capability not included in any other database. If the
text of a query has a byte-for-byte match with a cached query, MySQL can retrieve
the results directly from its cache without compiling the query, getting locks or doing
index accesses. Obviously, this technique is only effective for tables with few
updates, but it certainly made an impact on this benchmark and is a helpful
optimization for many situations. MySQL also supports different database engines on
a table-by-table basis; no other tested database had this feature.

They also found that of the five databases they tested, only Oracle9i and MySQL
were able to run their test application as originally written for 8 hours without
problems. They had to work around various problems for all the others.

In this case, an OSS/FS program beat most of its proprietary competition in both
performance and reliability (in terms of being able to run a correctly-written
application without problems). A proprietary program (Oracle) beat it, but barely, and
its competitor is far more expensive. It certainly is arguable that MySQL is (for this
application) a comparable application worthy of consideration.

MySQL AB also reports other benchmark results comparing MySQL with other
products; however, since they are not an independent lab, I’m not highlighting their
results here.

13. In February 2003, scientists broke the Internet2 Land Speed Record using
GNU/Linux. Scientists sent 6.7 GB of uncompressed data at 923 megabits per second
in just 58 seconds from Sunnyvale, California, to Amsterdam - the equivalent of four
hours of DVD-quality movies, using a transfer speed 3,500 times faster than a typical
household broadband connection. The team used PCs running Debian GNU/Linux in
Amsterdam and Red Hat Linux in Sunnyvale, California.

14. Benchmarks comparing Sun Solaris x86 and GNU/Linux found many
similarities, but GNU/Linux had double the performance in web operations.
Tony Bourke’s October 2003 evaluation Sun Versus Linux: The x86 Smack-down
gave a general review comparing Sun Solaris x86 and Red Hat Linux. He found that
“Performance was overall similar for most of the metrics tested, perhaps with Linux
in a very slight lead. However, with the web operations test (arguably the most
important and relevant), Linux is a clear winner.” He found that, given the same web
serving programs and configuration, GNU/Linux supported over 2000 fetches/second
while Solaris x86 supported less than 1000 fetches/second.

All OSes in active development are in a constant battle for performance improvements over
their rivals. The history of comparing Windows and GNU/Linux helps put this in perspective:

1. Ziff-Davis found that GNU/Linux with Apache beat Windows NT 4.0 with IIS by
16%-50% depending on the GNU/Linux distribution. Ziff-Davis compared Linux
and Windows NT’s performance at web serving. They found that “Linux with
Apache beats NT 4.0 with IIS, hands down. SuSE, the least effective Linux, is 16%
faster than IIS, and Caldera, the leader, is 50% faster.”

2. Mindcraft released a report in April 1999 that claimed that Microsoft Windows
NT Server 4.0 is 2.5 times faster than Linux (kernel 2.2) as a File Server and 3.7
times faster as a Web Server when running on a 4-CPU SMP system. Several
people and organizations, such Linux Weekly News (LWN) and Dan Kegel,
identified serious problems with this study. An obvious issue was that NT was
specially tuned by Microsoft’s NT experts, at Microsoft, while GNU/Linux was not
tuned at all. Another issue is that the price/performance wasn’t considered (nor was

total expenditure kept constant - for the same amount of money, the GNU/Linux
system could have had better hardware). Mindcraft claimed they asked for help, but
they didn’t use the documented methods for getting help nor did they purchase a
support contract. Many were especially offended that even though this study was
funded by Microsoft (one of the contestants) and held at their facility, neither
Mindcraft’s initial announcement nor its paper made any mention of this conflict-of-
interest - and it could be easily claimed that their configuration was designed to put
GNU/Linux at a disadvantage. Their configuration was somewhat bizarre - it assumed
all web pages were static (typical big sites tend to use many dynamically generated
pages) and that there were 100 or so clients connected via 100baseT (in 1999 a more
typical situation would be that most clients are using slower 28.8 or 56 Kbps
modems).

Careful examination of the benchmark did find some legitimate Linux kernel
problems, however. These included a TCP bug, the lack of “wake one” semantics,
and SMP bottlenecks (see Dan Kegel’s pages for more information). The Linux
kernel developers began working on the weaknesses identified by the benchmark.

3. PC Week confirmed that Windows did indeed do better in this less probable
configuration. In June 30, 1999, Mindcraft released their Open Benchmark in
conjunction with PC Week. While this didn’t excuse Mindcraft’s biases, it did make a
convincing case that there were legitimate problems in the Linux kernel and Apache
that made GNU/Linux a poorer-performing product in this somewhat improbable
configuration (serving static web pages to clients with high-speed connections). Note
that this configuration was considerably different than Ziff-Davis’s, so the
benchmarks don’t necessarily conflict; it’s merely that different assumptions can
produce different results (as I’ve already stressed).

4. The German magazine c’t found that web sites with NT was better at static
content and dual network connections, but GNU/Linux was better for sites with
dynamic content and single connections. Their article Mixed Double: Linux and NT
as Web Server on the Test Bed examined Windows NT with IIS against GNU/Linux
(kernel 2.2.9) with Apache on a machine with four Pentium II Xeon CPUs. They
found that the performance winner depended on the situation (by now that should not
be a surprise). If the web server primarily served static web pages through two high-
performance network cards, NT’s performance was better. However, they also noted
that in sophisticated web sites this result didn’t apply, because such sites tend to have
primarily dynamic content, and that few sites had this kind of dual-network
connection (when only one network board was available, GNU/Linux generally had
an edge). They concluded that “Mindcraft’s result can’t be transferred to situations
with mainly dynamic contents - the common case in nearly every sophisticated web
site... In the web server areas most relevant for practical use, Linux and Apache are
already ahead by at least one nose. If the pages don’t come directly from the system’s
main memory, the situation is even reverted to favor Linux and Apache: Here, the
OpenSource movement’s prime products leave their commercial competitors from
Redmond way behind.” See their paper for more figures and background.

5. Network Computing found that GNU/Linux with Samba ran at essentially the
same speed as Windows for file serving. In their article “Is it Time for Linux”,
Network Computing compared Red Hat Linux v5.2 running Samba 2.0.3 against
Microsoft Windows NT Server Enterprise Edition on a Pentium II-based HP
NetServer LPr, stressing the machine with multiple reads and writes of small,
medium and large files over the course of several hours.

For file serving, they discovered only “negligible performance differences between
the two for average workloads... [and] depending on the degree of tuning performed

on each installation, either system could be made to surpass the other slightly in terms
of file-sharing performance.” Red Hat Linux slightly outperformed NT on file writes,
while NT edged out Red Hat Linux on massive reads. Note that their configuration
was primarily network-limited; they stated “At no point were we able to push the
CPUs much over 50-percent utilization-the single NIC, full duplex 100BASE-T
environment wouldn’t allow it.”

They also noted that “examining the cost difference between the two licenses brings
this testing into an entirely new light... the potential savings on licenses alone is eye-
opening. For example, based on the average street price of $30 for a Windows NT
client license, 100 licenses would cost around $3,000, plus the cost of an NT server
license (around $600). Compare this to the price of a Red Hat Linux CD, or perhaps
even a free download, and the savings starts to approach the cost of a low-end
workgroup server. Scale that up to a few thousand clients and you begin to see the
savings skyrocket.” See this paper’s section on total cost of ownership.

6. The Linux developers’ various efforts to improve performance appear to have
paid off. In June 2000, Dell measured the various SPECweb99 values noted above.

There are other benchmarks available, but I’ve discounted them on various grounds:

1. A more recent set of articles from eWeek on June 2001, shows some eye-popping
performance numbers for GNU/Linux with TUX. However, although they compare it
to Microsoft IIS, they don’t include Microsoft’s SWC (Scalable Web Cache),
Microsoft’s response to TUX - and omitting it makes this comparison less balanced.
You can read more at “Tux: Built for Speed”, “Smart Coding pays off Big”, and
Kegel’s detailed remarks.

2. The ZDNet article Take that! Linux beats MS in benchmark test, loudly trumpeted
that GNU/Linux was the May 2001 performance leader in the TPC-H decision
support (database) benchmark (“100Gb” category). However, this result should not be
taken very seriously; the hardware that Linux ran on was more powerful than that of
the runner-up (Windows 2000). Frankly, the more surprising fact than its top score
(which can be easily explained by the hardware) is its mere measurement at all with
this benchmark - traditionally only Microsoft’s numbers are reported for this
benchmark at this range. For more information, see the TPC results.

More information on various benchmarks is available from Kegel’s NT vs. Linux Server
Benchmark Comparisons, SPEC, and the dmoz entry on benchmarking.

Remember, in benchmarking, everything depends on the configuration and assumptions that
you make. Many systems are constrained by network bandwidth; in such circumstances
buying a faster computer won’t help at all. Even when network bandwidth isn’t the limitation,
much depends on what the products are designed to do. Neither Windows nor GNU/Linux do
well in large-scale symmetric multiprocessing (SMP) shared memory configurations, e.g., for
64-way CPUs with shared memory. On the other hand, if you want massive distributed non-
shared memory, GNU/Linux does quite well, since you can buy more CPUs with a given
amount of money. If massive distribution can’t help you and you need very high performance,
Windows isn’t even in the race; today Windows 2000 only runs on Intel x86 compatible
chips, while GNU/Linux runs on much higher performance processors as well as the x86.

5. Scalability
Which brings us to the topic of scalability, a simple term with multiple meanings:

1. GNU/Linux and NetBSD (both OSS/FS) support a wider range of hardware
platforms and performance than any other OS. Many people mean by
“scalability” to answer the question, “can you use the same software system for both
small and large projects?” Often the implied issue is that you’d like to start with a
modest system, but have the ability to grow the system as needs demand without
costly modifications. Here OSS/FS is unbeatable; because many people can identify
scalability problems, and because its source code can be optimized for its platform,
the scalability of many OSS/FS products is amazing. Let’s specifically look at
GNU/Linux. GNU/Linux works on PDAs (including the Agenda VR3), obsolete
hardware (so you needn’t throw the hardware away), common modern PC hardware,
over a dozen different chipsets (not just Intel x86s), mainframes, massive clusters,
and a number of supercomputers. There’s even a prototype implementation of
GNU/Linux on a wrist watch, And GNU/Linux runs on a vast number of different
CPU chips, including the x86, Intel Itanium, ARM, Alpha, IBM AS/400 (midrange),
SPARC, MIPS, 68k, and Power PC. Another OS that widely scales to many other
hardware platforms is NetBSD.

GNU/Linux is widely used for massive parallel processing; a common approach for
doing this is the Beowulf architecture. Sandia’s “CPlant” runs on a set of systems
running GNU/Linux, and it’s the forty-second most powerful computer in the world
as of June 2001 (number 42 on the TOP 500 Supercomputer list, June 2001).
Lawrence Livermore National Laboratory’s “Thunder” is based on Linux, and a May
2004 report states that it delivers 19.94 teraflops, making it the most powerful
computer in North America (and the second fastest on earth). IBM announced in
October 2002 that GNU/Linux will be the main OS for IBM’s “Blue Gene” family of
supercomputers. IBM plans for the Blue Gene family to eventually perform perform a
quadrillion calculations per second (one petaflop). Blue Gene/L, the first member of
the family due in 2004 or 2005, will contain 65,000 processors, 16 trillion bytes of
memory, and be able to perform 200 trillion calculations per second.

Thus, you can buy a small GNU/Linux or NetBSD system and grow it as your needs
grow; indeed, you can replace small hardware with massively parallel or extremely
high-speed processors or very different CPU architectures without switching OSes.
Windows CE/ME/NT scales down to small platforms, but not to large ones, and it
only works on x86 systems. Many Unix systems (such as Solaris) scale well to
specific large platforms but not as well to distributed or small platforms. These
OSS/FS systems are some of the most scalable programs around.

2. OSS/FS development processes can scale to develop large software systems. At
one time it was common to ask if the OSS/FS process is “scalable,” that is, if OSS/FS
processes could really develop large-scale systems. Bill Gates’ 1976 “Open Letter to
Hobbyists” asked rhetorically, “Who can afford to do professional work for nothing?
What hobbyist can put three man-years into programming, finding all bugs,
documenting his product, and distribute it for free?” He presumed these were
unanswerable questions - but he was wrong. See my reports estimating GNU/Linux’s
size. For Red Hat Linux 6.2, I found the size to be over 17 million source lines of
code (SLOC). Implemented traditionally it would have taken 4,500 person-years and
over $600 million to implement this distribution. For Red Hat Linux 7.1, I found it to
have over 30 million SLOC, representing 8,000 person-years or $1 billion (a
“Gigabuck”). Most developers ascribe to the design principle that components should
be divided into smaller components where practical - a practice also applied to
GNU/Linux - but some components aren’t easily divided, and thus some components
are quite large themselves (e.g., over 2 million lines of code for the kernel, mostly in
device drivers). By October 2002, Sourceforge.net announced that it had surpassed

500,000 registered users and supported almost 50,000 OSS/FS projects - and a vast
number of OSS/FS projects don’t use SourceForge. Thus, it’s no longer reasonable to
argue that OSS/FS cannot scale to develop large systems -- because it clearly can.

6. Security
Quantitatively measuring security is very difficult. However, here are a few attempts to do so,
and they suggest that OSS/FS is often superior to proprietary systems, at least in some cases.
I’ll concentrate on comparing OSS/FS to Windows systems, since as noted above other
proprietary systems are increasingly including OSS/FS components (making comparisons
more difficult).

1. J.S. Wurzler Underwriting Managers’ “hacker insurance” costs 5-15% more if
Windows is used instead of Unix or GNU/Linux for Internet operation. At least
one insurance company has indicated that Windows NT is less secure than Unix or
GNU/Linux systems, resulting in higher premiums for Windows-based systems. It’s
often difficult to find out when a company has been successfully cracked; companies
often don’t want to divulge such information to the public for a variety of reasons.
Indeed, if consumers or business partners lost trust in a company, the resulting loss
might be much greater than the original attack. However, insurance companies that
insure against cracking can require that they get such information (as a condition of
coverage), and can compute future premiums based on that knowledge. According to
Cnet, Okemos, Mich.-based J.S. Wurzler Underwriting Managers, one of the earliest
agencies to offer “hacker insurance” (and thus more likely to have historical data for
premium calculation), has begun charging its clients anywhere from 5 to 15 percent
more if they use Microsoft’s Windows NT software instead of Unix or GNU/Linux
for their Internet operations. Walter Kopf, senior vice president of underwriting, said
that “We have found out that the possibility for loss is greater using the NT system.”
He also said the decision is based on findings from hundreds of security assessments
the company has done on their small and midsize business clients over the past couple
of years.

2. Most defaced web sites are hosted by Windows, and Windows sites are
disproportionately defaced more often than explained by its market share.
Another way to look at security is to look at the OS used by defaced web sites, and
compare them to their market share. A “defaced” web site is a site that has been
broken into and has its content changed (usually in a fairly obvious way, since subtle
modifications are often not reported). The advantage of this measure is that unlike
other kinds of security break-ins (which are often “hushed up”), it’s often very
difficult for victims to hide the fact that they’ve been successfully attacked.
Historically, this information was maintained by Attrition.org. A summary can be
found in James Middleton’s article, with the actual data found in Attrition.org’s web
site. Attrition.org’s data showed that 59% of defaced systems ran Windows, 21%
Linux, 8% Solaris, 6% BSD, and 6% all others in the period of August 1999 through
December 2000. Thus, Windows systems have had nearly 3 times as many
defacements as GNU/Linux systems. This would make sense if there were 3 times as
many Windows systems, but no matter which figures you use, that’s simply not true.

Of course, not all sites are broken through their web server and OS - many are broken
through exposed passwords, bad web application programming, and so on. But if this
is so, why is there such a big difference in the number of defacements based on the
OS? No doubt some other reasons could be put forward (this data only shows a
correlation not a cause), but this certainly suggests that OSS/FS can have better
security.

Attrition.org has decided to abandon keeping track of this information due to the
difficulty of keeping up with the sheer volume of broken sites, and it appeared that
tracking this information wouldn’t be possible. However, defaced.alldas.de has
decided to perform this valuable service. Their recent reports show that this trend has
continued; on July 12, 2001, they report that 66.09% of defaced sites ran Windows,
compared to 17.01% for GNU/Linux, out of 20,260 defaced websites.

3. The Bugtraq vulnerability database suggests that the least vulnerable OS is
OSS/FS, and that all the OSS/FS OSes in its study were less vulnerable than
Windows in 1999-2000, unless you counted every GNU/Linux vulnerability
multiple times. One approach to examining security is to use a vulnerability
database; an analysis of one database is the Bugtraq Vulnerability Database Statistics
page. As of September 17, 2000, here are the total number of vulnerabilities for some
leading OSes:

OS 1997 1998 1999 2000

Debian GNU/Linux 2 2 30 20

OpenBSD 1 2 4 7

Red Hat Linux 5 10 41 40

Solaris 24 31 34 9

Windows NT/2000 4 7 99 85

4. You shouldn’t take these numbers very seriously. Some vulnerabilities are more
important than others (some may provide little if exploited or only be vulnerable in
unlikely circumstances), and some vulnerabilities are being actively exploited (while
others have already been fixed before exploitation). OSS/FS OSes tend to include
many applications that are usually sold separately in proprietary systems (including
Windows and Solaris). For example, Red Hat 7.1 includes two relational database
systems, two word processors, two spreadsheet programs, two web servers, and many
text editors. In addition, in the open source world, vulnerabilities are discussed
publicly, so vulnerabilities may be identified for software still in development (e.g.,
“beta” software). Those with small market shares are likely to have less analysis. The
“small market share” comment won’t work with GNU/Linux, since GNU/Linux is the
#1 or #2 server OS (depending on how you count them). Still, this clearly shows that
the three OSS/FS OSs listed (Debian GNU/Linux, OpenBSD, and Red Hat Linux) did
much better by this measure than Windows in 1999 and (so far) in 2000. Even if a
bizarre GNU/Linux distribution was created explicitly to duplicate all vulnerabilities
present in any major GNU/Linux distribution, this intentionally bad GNU/Linux
distribution would still do better than Windows (it would have 88 vulnerabilities in
1999, vs. 99 in Windows). The best results were for OpenBSD, an OSS/FS OS that
for years has been specifically focused on security. It could be argued that its smaller
number of vulnerabilities is because of its rarer deployment, but the simplest
explanation is that OpenBSD has focused strongly on security - and achieved it better
than the rest.

5. This data is partly of interest because various reporters make the same mistake:
counting the same vulnerability multiple times. One journalist, Fred Moody, failed to
understand his data sources - he used these figures to try to show show that
GNU/Linux had worse security. He took these numbers and then added the
GNU/Linux ones so each Linux vulnerability was counted at least twice (once for
every distribution it applied to plus one more). By using these nonsensical figures he
declared that GNU/Linux was worse than anything. If you read his article, you also

must read the rebuttal by the manager of the Microsoft Focus Area at SecurityFocus
to understand why the journalist’s article was so wrong.

6. In 2002, another journalist (James Middleton) made the same mistake, apparently not
learning from prior work. Middleton counted the same Linux vulnerability up to four
times. What’s bizarre is that he even reported the individual numbers showing that
specific Linux systems were actually more secure by using Bugtraq’s vulnerability
list through August 2001, and somehow he didn’t realize what it meant. He noted that
Windows NT/2000 suffered 42 vulnerabilities, while Mandrake Linux 7.2 notched up
33 vulnerabilities, Red Hat Linux 7.0 suffered 28, Mandrake 7.1 had 27 and Debian
2.2 had 26. In short, all of the GNU/Linux distributions had significantly fewer
vulnerabilities by this count. It’s not fully clear what was being considered as being
“in” the OS in this case, which makes a difference. There are some hints that
vulnerabilities in some Windows-based products (such as Exchange) were not
counted, while vulnerabilities in GNU/Linux products with the same functionality
(e.g., sendmail) were counted. It also appears that many of the Windows attacks were
more dangerous (which were often attacks that could be invoked by remote attackers
and were actively exploited), as compared to the GNU/Linux ones (which were often
attacks that could only be invoked by local users and were not actively exploited at
the time). I would appreciate links to someone who’s analyzed these issues more
carefully. The funny thing is that given all these errors, the paper gives evidence that
the GNU/Linux distributions were more secure.

7. The September 30, 2002 VNUnet.com article “Honeymoon over for Linux Users”,
claims that there are more “Linux bugs” than “Microsoft bugs.” It quotes X-Force
(the US-based monitoring group of security software firm Internet Security Systems),
and summarizes by saying that in 2001 the centre found 149 bugs in Microsoft
software compared to 309 for Linux, and in 2002 485 Linux bugs were found
compared to Microsoft’s 202. However, Linux Weekly News discovered and reported
serious flaws in these figures:

1. “Each distribution is counted independently. The same vulnerability in five
distributions will count as five separate vulnerabilities. This practice
drastically overstates the number of reported Linux problems.

2. Linux vulnerabilities include those in applications (i.e. PostgreSQL) which
are not part of a standard Windows system.

3. Most Linux vulnerabilities are found through code audits and similar efforts;
they are patched and reported before any exploits happen. Any Windows
bugs found through similar audits are fixed silently and do not appear in these
counts.

Indeed, assuming that the vulnerabilities were only counted three times (and thus
dividing by only 3) would show Linux as having a better result, never mind the fact
that there are more than 3 Linux distributions and the other factors noted by Linux
Weekly News.

Indeed, as noted in Bruce Schneier’s Crypto-gram of September 15, 2000,
vulnerabilities are affected by other things such as how many attackers exploit the
vulnerability, the speed at which a fix is released by a vendor, and the speed at which
they’re applied by administrators. Nobody’s system is invincible.

A more recent analysis by John McCormick in Tech Republic compared Windows
and Linux vulnerabilities using numbers through September 2001. This is an
interesting analysis, showing that although Windows NT lead in the number of
vulnerabilities in 2000, using the 2001 numbers through September 2001, Windows
2000 had moved to the “middle of the pack” (with some Linux systems having more,
and others having fewer, vulnerabilities). However, it appears that in these numbers,

bugs in Linux applications have been counted with Linux, while bugs in Windows
applications haven’t - and if that’s so, this isn’t really a fair comparison. As noted
above, typical Linux distributions bundle many applications that are separately
purchased from Microsoft.

8. Red Hat (an OSS/FS vendor) responded more rapidly than Microsoft or Sun to
advisories; Sun had fewer advisories to respond to yet took the longest to
respond. Another data point is that SecurityPortal has compiled a list of the time it
takes for vendors to respond to vulnerabilities. They concluded that:

How did our contestants [fare]? Red Hat had the best score, with 348 recess days on
31 advisories, for an average of 11.23 days from bug to patch. Microsoft had 982
recess days on 61 advisories, averaging 16.10 days from bug to patch. Sun proved
itself to be very slow, although having only 8 advisories it accumulated 716 recess
days, a whopping three months to fix each bug on average.

Their table of data for 1999 is as shown:

1999 Advisory Analysis
Vendor Total Days, Hacker Recess Total Advisories Recess Days/Advisory
Red Hat 348 31 11.23

Microsoft 982 61 16.10

Sun 716 8 89.50

Clearly this table uses a different method for counting security problems than the
prior table. Of the three noted here, Sun’s Solaris had the fewest vulnerabilities, but it
took by far the longest to fix security problems identified. Red Hat was the fastest at
fixing security problems, and placed in the middle of these three in number of
vulnerabilities. It’s worth noting that the OpenBSD OS (which is OSS/FS) had fewer
reported vulnerabilities than all of these. Clearly, having a proprietary OS doesn’t
mean you’re more secure - Microsoft had the largest number of security advisories,
by far, using either counting method.

More recent examples seem to confirm this; on September 30, 2002, eWeek Labs’
article “Open Source Quicker at Fixing Flaws” listed specific examples of more rapid
response. This article can be paraphrased as follows: In June 2002, a serious flaw was
found in the Apache Web server; the Apache Software Foundation made a patch
available two days after the Web server hole was announced. In September 2002, a
flaw was announced in OpenSSL and a patch was available the same day. In contrast,
a serious flaw was found in Windows XP that made it possible to delete files on a
system using a URL; Microsoft quietly fixed this problem in Windows XP Service
Pack 1 without notifying users of the problem. A more direct comparison can be seen
in how Microsoft and the KDE Project responded to an SSL (Secure Sockets Layer)
vulnerability that made the Internet Explorer and Konqueror browsers, respectively,
potential tools for stealing data such as credit card information. The day the SSL
vulnerability was announced, KDE provided a patch. Later that week, Microsoft
posted a memo on its TechNet site basically downplaying the problem. The article
Linux Security Holes Opened and Closed makes the same argument: OSS/FS systems
fix problems more rapidly, reducing the time available for attackers to exploit them.

In an August 18, 2004 interview, Symantec’s chief technology officer Robert Clyde
argued that proprietary vendors were more reliable for fixing problems within a fixed

timescale, and that he didn’t know of a single vendor who would sit on a
vulnerability. Yet the day before (August 17), an eWeek article revealed that Oracle
waited 8 months to fix a vulnerability. And Microsoft waited 9 months to fix a critical
IE vulnerability (and only fixed it after it was being actively exploited in 2004).
Proprietary vendors are certainly not winning prizes for reliably and rapidly fixing
security vulnerabilities.

9. A 2002 survey of developers found that GNU/Linux systems are relatively
immune from attacks from outsiders. Evans Data Corp.’s Spring 2002 Linux
Developer Survey surveyed over 400 GNU/Linux developers, and found that Linux
systems are relatively immune from attacks from outsiders. Even though computer
attacks have almost doubled annually since 1988 (according to CERT), 78% of the
respondents to the GNU/Linux developers survey have never experienced an
unwanted intrusion and 94% have operated virus-free. Clearly, the survey shows that
GNU/Linux “doesn’t get broken into very often and is even less frequently targeted
by viruses,” according to Jeff Child (Evans Data Corp.’s Linux Analyst); and claims
that “Linux systems are relatively immune from attacks from outsiders.” Child notes
that it’s much harder to hack a knowledgeable owner’s system (and most Linux
developers have hands-on, technical knowledge) and that because there are fewer
desktop GNU/Linux systems there are fewer viruses being created to attack
GNU/Linux. The developers being surveyed attributed the low incidence of attacks to
the Open Source Software (OSS) environment; “more than 84% of Linux developers
believe that Linux is inherently more secure than software not created in an OSS
environment,” and they ranked “Linux’s security roughly comparable in security to
Solaris and AIX ... and above any of the Windows platforms by a significant margin.”

10. Apache has a better security record than Microsoft’s IIS, as measured by
reports of serious vulnerabilities. Eweek’s July 20, 2001 article “Apache avoids
most security woes” examined security advisories dating back to Apache 1.0. They
found that Apache’s last serious security problem (one where remote attackers could
run arbitrary code on the server) was announced in January 1997. A group of less
serious problems (including a buffer overflow in the server’s logresolve utility) was
announced and fixed in January 1998 with Apache 1.2.5. In the three and a half years
since then, Apache’s only remote security problems have been a handful of denial-of-
service and information leakage problems (where attackers can see files or directory
listings they shouldn’t).

In contrast, in the article “IT bugs out over IIS security,” eWeek determined that
Microsoft has issued 21 security bulletins for IIS from January 2000 through June
2001. Determining what this number means is a little difficult, and the article doesn’t
discuss these complexities, so I examined these bulletins to find their true
significance. Not all of the bulletins have the same significance, so just stating that
there were “21 bulletins” doesn’t give the whole picture. However, it’s clear that
several of these bulletins discuss dangerous vulnerabilities that allow an external user
to gain control over the system. I count 5 bulletins on such highly dangerous
vulnerabilities for IIS 5.0 (in the period from January 2000 through June 2001), and
prior to that time, I count 3 such bulletins for IIS 4.0 (in the period of June 1998
through December 1999). Feel free to examine the bulletins yourself; they are MS01-
033, MS01-026, MS01-025, MS01-023, MS00-086, MS99-025, MS99-019, and
MS99-003. The Code Red worm, for example, exploited a vast number of IIS sites
through the vulnerabilities identified in the June 2001 security bulletin MS01-033.

In short, by totaling the number of reports of dangerous vulnerabilities (that allow
attackers to execute arbitrary code), I find a total of 8 bulletins for IIS from June 1998
through June 2001, while Apache had zero such vulnerabilities for that time period.

Apache’s last such report was in January 1998, and that one affected the log analyzer
not the web server itself. As was noted above, the last such dangerous vulnerability in
Apache itself was announced in January 1997.

It’s time-consuming to do this kind of analysis, so I haven’t repeated the effort more
recently. However, it’s worth noting eWeek’s April 10, 2002 article noting that ten
more IIS flaws have been found in IIS Server 4.0, 5.0, and 5.1, some of which would
allow attackers to crash the IIS service or allow the attacker to run whatever code he
chooses.

Even this doesn’t give the full story, however; a vulnerability in IIS tends to be far
more dangerous than an equivalent vulnerability in Apache, because Apache wisely
follows the good security practice of “least privilege.” IIS is designed so that anyone
who takes over IIS can take over the whole system, performing actions such as
reading, modifying, or erasing any file on the system. In contrast, Apache is installed
with very few privileges by default, so even taking over Apache gives attackers
relatively few privileges. For example, cracking Apache does not give attackers the
right to modify or erase most files. This is still not good, of course, and an attacker
may be able to find another vulnerability to give them unlimited access, but an
Apache system presents more challenges to an attacker than IIS.

The article claims there are four reasons for Apache’s strong security, and three of
these reasons are simply good security practices. Apache installs very few server
extensions by default (a “minimalist” approach), all server components run as a non-
privileged user (supporting “least privilege” as noted above), and all configuration
settings are centralized (making it easy for administrators to know what’s going on).
However, the article also claims that one of the main reasons Apache is more secure
than IIS is that its “source code for core server files is well-scrutinized,” a task that is
made much easier by being OSS/FS, and it could be argued that OSS/FS encourages
the other good security practices.

Simple vulnerability notice counts are an inadequate metric for security. A vendor
could intentionally release fewer bulletins - but since Apache’s code and its security
is publicly discussed, it seems very unlikely that Apache is deliberately
underreporting security vulnerabilities. Fewer vulnerability notices could result if the
product isn’t well scrutinized or is rarely used - but this simply isn’t true for Apache.
Even the trend line isn’t encouraging - using the months of the bulletins (2/99, 6/99,
7/99, 11/00, three in 5/01, and 6/01), I find the time in months between new major IIS
vulnerability announcements to be 4, 1, 18, 6, 0, 0, 1, and 3 as of September 2001;
this compares to 12 and 44 as of September 2001 for Apache. Given these trends, it
looks like IIS’s security is slowly improving, but it has little likelihood of meeting
Apache’s security in the near future. Indeed, these vulnerability counts are
corroborated by other measures such as the web site defacement rates.

The issue here isn’t whether or not a given program is invincible (what nonsense!) -
the issue is which is more likely to resist future attacks, based on past performance.
It’s clear that the OSS/FS Apache has much a better security record than the
proprietary IIS, so much so that Gartner Group decided to make an unusual
recommendation (described below).

11. IIS was attacked 1,400 times more frequently than Apache in 2001, and
Windows was attacked more than all versions of Unix. SecurityFocus co-founder
and CEO Arthur Wong reported an analysis of the various vulnerabilities and attacks
(based on SecurityFocus’s data) in the February 2002 article RSA: Security in 2002

worse than 2001, exec says. IIS was attacked 17 million times, but Apache was
attacked only 12,000 times. This is a stunning comparison, since there are about twice
as many Apache systems on the Internet. In 2001, Windows systems were attacked 31
million times, while Unix systems were attacked 22 million times. See the article for
more information.

12. The Gartner Group is recommending that businesses switch from Microsoft IIS
to Apache or iPlanet due to IIS’s poor security track record, noting that
enterprises had spent $1.2 billion simply fixing Code Red (IIS-related)
vulnerabilities by July 2001. Microsoft’s IIS has such a bad security record that in
September 2001, Gartner Group announced a recommendation that “businesses hit by
both Code Red and Nimda immediately investigate alternatives to IIS, including
moving Web applications to Web server software from other vendors such as iPlanet
and Apache. Although those Web servers have required some security patches, they
have much better security records than IIS and are not under active attack by the vast
number of virus and worm writers.” Microsoft is sometimes a Gartner Group
customer, so this announcement is especially surprising.

In a background document by Gartner, they discuss Code Red’s impacts further. By
July 2001, Computer Economics (a research firm) estimated that enterprises
worldwide had spent $1.2 billion fixing vulnerabilities in their IT systems that Code
Red could exploit (remember, Code Red is designed to only attack IIS systems;
systems such as Apache are immune). To be fair, Gartner correctly noted that the
problem is not just that IIS has vulnerabilities; part of the problem is that enterprises
using IIS are not keeping their IT security up to date, and Gartner openly wondered
why this was the case. However, Gartner also asked the question, “why do
Microsoft’s software products continue to provide easily exploited openings for such
attacks?” This was prescient, since soon after this the “Nimba” attack surfaced which
attacked IIS, Microsoft Outlook, and other Microsoft products.

A brief aside is in order here. Microsoft spokesman Jim Desler tried to counter
Gartner’s recommendation, trying to label it as “extreme” and saying that “serious
security vulnerabilities have been found in all Web server products and platforms..
this is an industry-wide challenge.” While true, this isn’t the whole truth. As Gartner
points out, “IIS has a lot more security vulnerabilities than other products and
requires more care and feeding.” It makes sense to select the product with the best
security track record, even if no product has a perfect record.

13. The majority of the most serious security problems only apply to Microsoft’s
products, and not to OSS/FS products, as suggested by the CERT/CC’s “most
frequent, high-impact types of security incidents and vulnerabilities” and the
ICAT database. Some security vulnerabilities are more important than others, for a
variety of reasons. Thus, some analysis centers try to determine what’s “most
important,” and their results suggest that OSS/FS just doesn’t have as many
vulnerabilities.

The CERT Coordination Center (CERT/CC) is federally funded to study security
vulnerabilities and perform related activities such as publishing security alerts. I
sampled their list of “current activity” of the most frequent, high-impact security
incidents and vulnerabilities on September 24, 2001, and found yet more evidence
that Microsoft’s products have poor security compared to others (including OSS/FS).
Four of the six most important security vulnerabilities were specific to Microsoft:
W32/Nimda, W32/Sircam, cache corruption on Microsoft DNS servers, and “Code
Red” related activities. Only one of the six items primarily affected non-Microsoft
products (a buffer overflow in telnetd); while this vulnerability is important, it’s

worth noting that many open source systems (such as Red Hat 7.1) normally don’t
enable this service (telnet) in the first place and thus are less likely to be vulnerable.
The sixth item (“scans and probes”) is a general note that there is a great deal of
scanning and probing on the Internet, and that there are many potential vulnerabilities
in all systems. Thus, 4 of 6 issues are high-impact vulnerabilities are specific to
Microsoft, 1 of 6 are vulnerabilities primarily affecting Unix-like systems (including
OSS/FS OSes), and 1 of 6 is a general notice about scanning. Again, it’s not that
OSS/FS products never have security vulnerabilities - but they seem to have fewer of
them.

The ICAT system provides a searchable index and ranking for the vulnerabilities
cross-references by CVE. I sampled its top ten list on December 19, 2001; this top ten
list is defined by the number of requests made for a vulnerability in ICAT (and
including only vulnerabilities within the last year). In this case, 8 of the top 10
vulnerabilities only affect proprietary systems (in all cases, Windows). Only 2 of 10
affect OSS/FS systems (#6, CAN-2001-0001, a weakness in PHP-Nuke 4.4, and #8,
CVE-2001-0013, a new vulnerability found in an old version of BIND - BIND 4).
Obviously, by itself this doesn’t prove that there are fewer serious vulnerabilities in
OSS/FS programs, but it is suggestive of it.

An analysis of security reports by Nicholas Petreley found that a much larger
percentage of Windows vulnerabilities are critical compared to Red Hat Linux.
In October 2004, Nicholas Petreley’s paper “Security Report: Windows vs Linux”
(available in HTML or PDF) found that Windows vulnerabilities are far more likely
to be serious than vulnerabilities in Red Hat Linux. He examined the 40 most recent
patches/vulnerabilities listed for Microsoft Windows Server 2003 vs. Red Hat
Enterprise Linux AS v.3, as reported by each vendor’s website. He then used a metric
to score their severity, and by that measure, 50% of the Windows vulnerabilities are
critical, compared to 10% being critical in Red Hat.

There’s an interesting twist here; Microsoft claims that certain vulnerabilities aren’t
as serious as long as an administrator doesn’t change certain settings. But as Petreley
notes, “it is nearly inconceivable that anyone who uses Windows Server 2003 will
leave the [Windows Server 2003] settings ... unchanged. These settings make the
Internet Explorer browser nearly useless to the server administrator who wants to
perform any browser-based administrative tasks, download updates, etc. To lower the
severity rank based on the assumption that Windows Server 2003 users will leave
these default settings as they are is a fantasy, at best.” Also, Microsoft presumes that
“Users” are never “Administrators”, a very doubtful assumption on a Microsoft
Windows server. If you accept these implausible claims, the percentage drops to 40%,
which is still larger than Red Hat’s. Microsoft assigns its own criticality levels (Red
Hat doesn’t), but even using Microsoft’s reporting level things are worse; 38% of the
patched programs are rated as Critical by Microsoft.

He also did some analysis of the CERT database; while that analysis was more
limited, that still suggested that Linux vulnerabilities tended to be less severe.

The article goes on to argue against what it terms “myths.” Petreley also argues that
the reason for this difference is that Linux-based systems have a far better design for
security than Windows systems. His design argument makes four statements: Linux-
based systems are based on a long history of well fleshed-out multi-user design, they
are modular by design (not monolithic), they are not constrained by an RPC model
(that unnecessarily enables external control of internal functions), and Linux servers
are ideally designed for headless non-local administration.

This study didn’t try to determine how many critical vulnerabilities there have been
overall in the same period, which is a weakness of the study. And Petreley is certainly
an advocate of GNU/Linux systems. Still, this report makes a plausible case that there
is a difference in design and/or development process that makes GNU/Linux
vulnerabilities less severe than Microsoft Windows vulnerabilies.

14. Computer viruses are overwhelmingly more prevalent on Windows than any
other system. Virus infection has been a major cost to users of Microsoft Windows.
The LoveLetter virus alone is estimated to have cost $960 million in direct costs and
$7.7 billion in lost productivity, and the anti-virus software industry sales total nearly
$1 billion annually. Dr Nic Peeling and Dr Julian Satchell’s Analysis of the Impact of
Open Source Software includes an analysis of the various data sources for virus
counts, noting the disproportionate vulnerability of Windows systems. Here is what
they said:

The numbers differ in detail, but all sources agree that computer viruses are
overwhelmingly more prevalent on Windows than any other system. There are about
60,000 viruses known for Windows, 40 or so for the Macintosh, about 5 for
commercial Unix versions, and perhaps 40 for Linux. Most of the Windows viruses
are not important, but many hundreds have caused widespread damage. Two or three
of the Macintosh viruses were widespread enough to be of importance. None of the
Unix or Linux viruses became widespread - most were confined to the laboratory.

Many have noted that one reason Windows is attacked more often is simply because
there are so many Windows systems in use. Windows is an attractive target for virus
writers simply because it is in such widespread use. For a virus to spread, it must
transmit itself to other susceptible computers; on average, each infection must cause
at least one more. The ubiquity of Windows machines makes it easier for this
threshold to be reached.

There may be a darker reason: there are many who do not like Microsoft’s business
practices, and perhaps this contributes to the problem. Some of Microsoft’s business
practices have been proven in court to be illegal, but the U.S. government appears
unwilling to effectively punish or stop those practices. Some computer literate people
may be taking their frustration out on users of Microsoft’s product. This is absolutely
wrong, and in most countries illegal. It is extremely unethical to attack an innocent
user of a Microsoft product simply because of Microsoft’s policies, and I condemn
such behavior. At this point, although this has been speculated many times, I have not
found any evidence that this is a widespread motivator for actual attacks. On the other
hand, if you are choosing products, do you really want to choose the product whom
people may have a vendetta against?

However, the reasons given above don’t explain the disproportionate vulnerability of
Microsoft’s products. A simpler explanation, and one that is easily proven, is that
Microsoft has made many design choices over the years in Microsoft’s products that
are fundamentally less secure, and this has made their products a much easier target
than many other systems. Examples include executing start-up macros in Word,
executing attachments in Outlook, and the lack of write protection on system
directories in Windows 3.1/95/98. This may be because Microsoft has assumed that
customers will buy their products whether or not Microsoft secures them. After all,
until recently there’s been little competition, so there was no need to spend money on
“invisible” attributes such as security. It’s also possible that Microsoft is still trying to
adjust to an Internet-based world; the Internet would not have developed as it has
without Unix-like systems, which have supported the Internet standards for decades,

while for many years Microsoft ignored the Internet and then suddenly had to play
“catch-up” in the early 1990s. Microsoft has sometimes claimed that they can’t secure
their products because they want to ensure that their products are “easy to use”. While
it’s true that some security features can make a product harder to use, usually a
secured product can be just as easy to use if the security features are carefully
designed into the product. Besides, what’s so easy to use about a system that must be
reformatted and reinstalled every few months because yet another virus got in? But
for whatever the reason, it’s demonstrably true that Microsoft’s designers have in the
past made decisions that made their products’ security much weaker than other
systems.

In contrast, while it’s possible to write a virus for OSS/FS OSes, their design makes it
more difficult for viruses to spread... showing that Microsoft’s design decisions were
not inevitable. It appears that OSS/FS developers tend to select design choices that
limit the damage of viruses, perhaps in part because their code is subject to public
inspection and comment. For example, OSS/FS programs generally do not support
start-up macros nor execution of mail attachments that can be controlled by attackers.
Also, leading OSS/FS OSes (such as GNU/Linux and the *BSDs) have always had
write protection on system directories. Another discussion on why viruses don’t seem
to significantly affect OSS/FS systems is available from Roaring Penguin. OSS/FS
systems are not immune to malicious code, but they are certainly more resistant.

15. Surveys report that GNU/Linux systems experience fewer viruses and successful
cracks. In July 2004, Evans Data’s Summer 2004 Linux Development Survey
reported that 92% of their Linux systems have never been infected with a virus, and
78% that their Linux systems have never been cracked (called “hacked” in the report).
This contrasts with their Spring 2004 survey, where only 40% non-Linux users
reported no security breach; indeed, 32% non-Linux users experienced three or more
breaches.

16. According to a June 2004 study by Sandvine, 80% of all spam is sent by infected
Windows PCs. 80% of all spam comes from computers contaminated with Trojan
horse infections, according to a study by network management firm Sandvine.
Trojans and worms with backdoor components turn infected PCs into drones in vast
networks of compromised zombie PCs.

Sandvine identified subscribers bypassing their home mail servers and contacting
many mail servers within a short period of time over sustained periods - i.e.,
spammers. It also looked at SMTP error messages returned to clarify the total volume
of spam. They then compared this with the messages passing through the service
provider’s mail system.

Sandvine’s preliminary analysis has shown that the most active Trojans for spamming
purposes are the Migmaf and SoBig variants; note that these are Windows-only
attacks. Indeed, since almost all successful trojans and worms are those that attack
Windows systems, it appears that this problem is essentially due to Windows systems.

17. National Cyber Security Alliance’s study of May 2003 reported that 91% of
Broadband users have spyware on their home computers running proprietary
operating systems; in contrast, there’s no evidence of that this is an issue for
OSS/FS systems. America Online, Inc. conducted a study for the National Cyber
Security Alliance. Its results, “Fast and Present Danger: In-Home Study on
Broadband Security among American Consumers” (May 2003) produces some
interesting results, in particular, they found that “91% of Broadband Users Have
Spyware Lurking on Home Computers”. Their study method did not appear to permit

collection of data from OSS/FS systems, and spyware systems are essentially
nonexistent on OSS/FS systems anyway.

18. Microsoft has had far more vulnerabilities than anyone else, according to
SecurityTracker. The paper SecurityTracker Statistics (March 2002) analyzes
vulnerabilities from April 2001 through March 2002. They identified 1595
vulnerability reports, covering 1175 products from 700 vendors. Their analysis found
that Microsoft had more vulnerabilities than anyone else (187, or 11.7% of all
vulnerabilities), and more than four times the next vendor. The next largest were Sun
(42, 2.6% of the total), HP (40, 2.5%), and IBM (40, 2.5%). Solely OSS/FS vendors
did much better: the Apache Software Foundation had 13 (0.8% of the total), and Red
Hat had 10 (0.6% of the total). It can be argued that Microsoft sells more kinds of
software than most other vendors, but this is nevertheless an astonishingly large
number of vulnerabilities. The gap between Microsoft and everyone else widened
during the second half of the year, which is even scarier.

19. In late June 2004, the U.S. Department of Homeland Security’s Computer
Emergency Readiness Team (CERT) recommended using browsers other than
Microsoft Corp.’s Internet Explorer (IE) for security reasons. Microsoft had
failed to patch a critical vulnerability for 9 months, and IE was being actively
exploited in horrendous ways. Customers then rushed to download Mozilla and
Mozilla Firebird, popular OSS/FS alternatives, to replace IE. This was a good
idea, since 4 more serious IE vulnerabilities were soon admitted, and the
technologically savvy began to switch in droves to OSS/FS browsers. The U.S.
CERT warned that the Microsoft browser (IE) cannot protect against vulnerabilities,
and there were dangerous active attacks exploiting them. A team of crackers
(supposedly Russia-based) exploited Microsoft IE vulnerabilities by also exploiting
other vulnerabilities in Microsoft’s IIS. The crackers broke into IIS sites and inserted
malicious code that IE users would download if they viewed an IIS site they’d broken
into. The IE users who visited those sites (who legitimately trusted these sites) would
have their IE program exploited, which then compromised their system. As a result,
many IE users had keystroke information stolen from them. It’s hoped the purpose
was to steal credit card numbers, though passwords and other sensitive data could
have been stolen too (e.g., to drain people’s bank accounts or steal extremely private
data). By June 25, 2004, this active attack was publicly known, but a fix to IE wasn’t
available until July 2, 7 days later. Even worse, ZDNet found that Microsoft had
failed to fix this critical known IE vulnerability for nearly nine months. And even
after a 9-month lead time, ComputerWorld learned that the patch doesn’t address
another closely related vulnerability.

Nine months is a shamefully long time; 2-30 days is the expected time by most
security practitioners, since every day a known exploit is unfixed is another day that
attackers can exploit it, and attackers often know and exploit attacks that the vendor
claims are secret. This is long after Microsoft loudly announced (in 2002) that it
would pay much more attention to security; certainly in this case users were left
unprotected for a long time. Even more tellingly, at the same time (June 28, 2004),
Microsoft’s Bill Gates told Australians that while other operating system vendors
took 90-100 days to release a security patch, Microsoft had this time “down to less
than 48 hours.” Gates assured attendees that the Internet Explorer attack was new, but
later analysis has shown otherwise. Clearly Microsoft admits that long delays in
security patches are a bad thing, but it nevertheless still commits them.

The U.S. CERT took the unusual step of noting that a useful solution would be to stop
using IE and use another program instead. SANS made a similar announcement,
noting that one solution would be to stop using IE. OSS/FS programs sometimes have
vulnerabilities too, but it’s rare that they last so long. More importantly, users of

OSS/FS programs can always fund to have a repair created and implemented quickly
if it is important to them, and can have that fix reviewed and shared with others
worldwide. Proprietary users have no such options; proprietary users are completely
dependent on the proprietary vendor for making any emergency repairs, and for more
reacting more responsibly than this. Downloads of Mozilla and Mozilla’s Firefox
dramatically increased in late June 2004, presumably as a response to this serious
problem in IE. Downloads of Mozilla and Firefox browsers hit an all-time high on
July 1, 2004, from the usual 100,000 or so downloads on a normal day to more than
200,000 in one day. Mozilla argues that IE is in general less secure, in part because
Microsoft’s ActiveX technologies, IE’s tight integration into the Microsoft operating
system, and IE’s weak default security settings make IE easier to exploit than its
competition. Even the U.S. CERT notes that IE includes many design decisions that
make it an especially easy web browser to exploit. In contrast, every change made to
Mozilla applications is first peer reviewed by at least two engineers who are familiar
with the code and overall architecture of the system before the new code is allowed
into the product. The product then goes through automated tests and evaluations, and
then Mozilla users and the development community are invited to review the impact
of each change by downloading the test builds that are produced two or three times a
day. All source code is available for review by anyone.

This problem was so significant that it was noted in many different media and
technology analysis sites. USA Today noted in 2004 that “Using Microsoft’s Internet
Explorer Web browser to surf the Internet has become a marked risk -- even with the
latest security patches installed.” The New York Times noted in 2004 that concerns
about Internet Explorer’s security vulnerabilities have dented its market share, and
that the US CERT recommendation to consider other browsers was an unusual step.
The Inquirer reported that the “US Government warns against Internet Explorer”,
noting that the US Government’s tone essentially pleaded for “users to stop using
Microsoft’s Internet Explorer”. Netcraft suggested that this may mean that the
browser wars will recommence. Netcraft noted that one major difference is that this
attack was different because of its extreme gravity: “victims of [these] attacks might
conceivably lose their life savings. Some people now perceive Internet Explorer and
Internet Banking as a potentially lethal cocktail that must not be mixed, with insiders
in the banking industry urging their families to switch if not operating systems, then
at least browsers, while conversely some internet banking customers have adapted to
the threat by forgoing convenience and moving funds back into accounts which
require traditional telephone and fax instructions.” Netcraft also noted that there is
now “a serious alternative to Internet Explorer available on Windows” and that “this
[combination of loss of confidence and a viable alternative] is an extremely
dangerous situation for Microsoft. The phishing threats and the growing professional
chorus of disapproval for Internet Explorer provide Windows users with very good
reasons to turn elsewhere, even if only temporarily. But [OSS/FS] Firefox is so good
that many will want to stay with it. And once they have tasted the power and freedom
of open source, maybe they will be tempted to try ‘just one more program’.”

Indeed, the security problems of IE have caused IE to lose marketshare, ceding
marketshare to OSS/FS browsers.

As if to prove the point of how differently security vulnerabilities are handled, a
vulnerability was found soon after that affected Mozilla and Firefox when running on
Windows (though it was actually another Windows vulnerability). In contrast with IE,
the security fix was delivered extremely rapidly. The initial notice of this
vulnerability was on July 7, it was fixed the same day, and the configuration change
was released to all in one day - with no known compromises to any system. The

Mozilla project has more information about the security issue, and you can even read
the detailed discussions between the finders and developers. What’s especially
interesting is that it’s not even a vulnerability in the OSS/FS programs; it’s a
vulnerability in Windows itself. The problem is the Windows maintains a registry of
secure programs that accept URLs, but the list provided by Microsoft includes an
application known to be insecure (the shell: URL). Windows XP Service Pack 1 was
supposed to have closed this hole, but it didn’t. Thus, the Mozilla project had to
create a patch to compensate for Windows’ insecurity, but explicitly disabling it on
Windows. It appears that other Microsoft products, such as MSN Messenger and
Word, are affected by this vulnerability in Windows. And it appears that Mozilla is
continuing to be proactive in its security; they have already added new features to
make attacks against the browser even more difficult.

After all that, on July 13, 2004, Secunia reported four more extremely critical
vulnerabilities in IE. The only solutions at the time were to disable active scripting or
use another product. It’s unlikely that these additional vulnerabilities will improve
IE’s reputation.

20. According to a Network Security evaluation, an OSS/FS vulnerability scanner
(Nessus) was found to be the best (most effective). On January 8, 2001, Network
Computing’s article Vulnerability Assessment Scanners. reported an evaluation of
nine network scanning tools, most of them proprietary. In their evaluation, Network
Computing set up demonstration systems with 17 of the most common and critical
vulnerabilities; they then used the various network scanning tools to see how
effectively each of the tools detected these vulnerabilities. Sadly, not one product
detected all vulnerabilities; the best scanner was the OSS/FS program Nessus
Security Scanner, which found 15 of the 17 (which also received their top total
score); the next best was a proprietary scanner which only found 13.5 out of 17.

In their words,

Some of us were a bit skeptical of the open-source Nessus project’s thoroughness
until [Nessus] discovered the greatest number of vulnerabilities. That’s a hard fact to
argue with, and we are now eating our words ... [Nessus] got the highest overall score
simply because it did more things right than the other products.

I agree with the authors that ideally a network vulnerability scanner should find every
well-known vulnerability, and that “even one hole is too many.” Still, perfection is
rare in the real world. More importantly, a vulnerability scanner should only be part
of the process to secure an organization - it shouldn’t be the sole activity. Still, this
evaluation suggests that an organization will be more secure, not less secure, by using
an OSS/FS program. It could be argued that this simply shows that this OSS/FS
program had more functionality - not more security - but in this case, the product’s
sole functionality was to improve security.

Security is notoriously hard to measure, and many reports that attempt to do so end up with
interesting information that’s hard to interpret or use. And some reports come from sources
whose reliability is widely questioned. On November 2, 2004, mi2g reported on successful
digital breaches against permanently connected computers worldwide. They concluded that
BSDs (which are usually OSS/FS) and Apple’s computers had the fewest security breaches;
on the surface, that sounds positive for OSS/FS. They also reported that GNU/Linux systems
had the most breaches, followed by Windows. That result sounds mixed, but digging deeper it
turns out that this ranking is artificial, based on artificial definitions. Their default definition
for a security breach only included manual attacks and ignored malware (viruses, worms, and

Trojans). Yet malware is one of the dominant security problems for Windows users, and only
Windows users! After all, why bother with a manual attack when completely automated
attacks against broad collections of computers will do more? When they include malware in
their calculations for all system breaches, “including the impact of MyDoom, NetSky, SoBig,
Klez and Sasser, Windows has become the most breached computing environment in the
world accounting for most of the productivity losses associated with malware - virus, worm
and trojan - proliferation.” Even without malware, in governments “the most breached
Operating System for online systems has now become Windows (57.74%) followed by Linux
(31.76%) and then BSD and Mac OS X together (1.74%)” (a reversal of their previous
rankings). But while these results are interesting, there are significant problems in interpreting
what these results actually mean:

1. Ignoring malware in the main report is hard to justify, though to be fair the report
does clearly state this assumption and explains how the results would change with a
different definition. But most users want to be protected from all attacks, automated
or not, and it’s especially hard to justify this assumption since malware is a leading
attack on only one of the systems.

2. None of these statistics, at least what’s publicly posted, seem to take market share
into account, or control sampling in general. If 2 of 100 type A machines are broken
into, and 1 of 1 type B machines are broken into, type A may have twice as many
break-ins, but that’s irrelevant to most users; what’s more interesting is noticing that
98% of the type A machines were unbreached, while 0% of the type B machines were
unbreached! Besides, what you really want to know is not raw numbers like this, but
the probability that a given system will be breached (given various criteria such
security configuration and as if you’re relatively up-to-date on patches). That
information doesn’t appear to be available from the public information provided.

Checking the source (mi2g) yields decidedly mixed reports, too. mi2g clearly states that it has
no financial interest in Apple. I always search for financial links in research reports, and that’s
a good sign at least. However, The Register, the full disclosure mailing list, attrition.org,
Vmyths, and Yahoo! News provide a number of troubling reports about the quality and
validity of mi2g’s reports. Many of these reports suggest that these figures are made up, and
cannot be relied on at all. Hopefully in the future I can gain a better understanding of the
situation; I know nothing more than what I reference above. But for now, I’m mentioning
both sides (mi2g’s results and the concerns many number of people have raised about them),
so that those who have heard about these results will know about the controversies and
limitations surrounding this data. I’m not including mi2g results in my major list of studies,
given the limitations and current questions surrounding them.

One serious problem in making secure software is that there are strong economic
disincentives for proprietary vendors to make their software secure. For example, if vendors
make their software more secure, they would often fail to be “first” in a given market; this
often means that they will lose that market. Since it is extremely difficult for customers to
distinguish proprietary software with strong security from those with poor security, the poor
products tend to eliminate the good ones (after all, they’re cheaper to develop and thus cost
less). Governments have other disincentives as well. For a discussion of some of the
economic disincentives for secure software, see Why Information Security is Hard - an
Economic Perspective by Ross Anderson (Proceedings of the Annual Computer Security
Applications Conference (ACSAC), December 2001, pp. 358-365). It’s not clear that OSS/FS
always avoids these disincentives, but it appears in at least some cases it does. For example,
OSS/FS source code is public, so the difference in security is far more visible than in
proprietary products.

One of the most dangerous security problems with proprietary software is that if intentionally
malicious code is snuck into it, such code is extremely difficult to find. Few proprietary
vendors have other developers examine all code in great detail - their testing processes are
designed to catch mistakes (not malice) and often don’t look at the code at all. In contrast,
malicious code can be found by anyone when the source code is publicly available, and with
OSS/FS, there are incentives for arbitrary people to review it (such as to add new features or
perform a security review of a product they intend to use). Thus, someone inserting malicious
code to an OSS/FS project runs a far greater risk of detection. Here are two examples, one
confirmed, one not confirmed:

1. Some time between 1992 and 1994, Borland inserted an intentional “back door” into
their database server, “InterBase”, as a secret username and fixed password. This
back door allowed any local or remote user to manipulate any database object and
install arbitrary programs, and in some cases could lead to controlling the machine as
“root”. This vulnerability stayed in the product for at least 6 years - no one else could
review the product, and Borland had no incentive to remove the vulnerability. Then
Borland released its source code on July 2000 as an OSS/FS project. The “Firebird”
project began working with the source code, and uncovered this serious security
problem with InterBase in December 2000 (only 5 months after release). By January
2001 the CERT announced the existence of this back door as CERT advisory CA-
2001-01. What’s discouraging is that the backdoor can be easily found simply by
looking at an ASCII dump of the program (a common cracker trick), so it’s quite
possible that this vulnerability was exploited many times in the intervening years.
Once this problem was found by open source developers reviewing the code, it was
patched quickly.

2. Mohammad Afroze Abdul Razzak, arrested by Mumbai (Bombay) police Oct. 2,
2001, claims that Osama bin Laden’s Al Qaeda network were able to gain
employment at Microsoft and attempted to plant “trojans, trapdoors, and bugs in
Windows XP.” This was reported to Ravi Visvesvaraya Prasad, a New Delhi
information systems and telecommunication consultant, and then reported by the
Washington Post’s Newsbytes division. This claim has not been confirmed; indeed,
I’m somewhat skeptical. The problem, however, is that this is impossible to disprove.
Even if this particular case isn’t true, note that this threat is unfortunately a credible
threat to proprietary software, because very few of its users can review the code. This
is far less dangerous to OSS/FS software, due to the worldwide review that’s possible
(including the ability to see the changes made in each version).

Bruce Perens, in “Open sourcers wear the white hats”, makes the interesting claim that most
of the people reviewing proprietary products looking for security flaws (aside from one or two
paid reviewers) are “black hats,” outsiders who disassemble the code or try various types of
invalid input in search of a flaw that they can exploit (and not report). There is simply little
incentive, and many roadblocks, for someone to search for security flaws simply to improve
someone else’s proprietary product. “Only a black hat would disassemble code to look for
security flaws. You won’t get any ‘white hats’ doing this for the purpose of [just] closing the
flaws.” In contrast, he thinks many open source developers do have such an incentive. This
article slightly overstates the case; there are other incentives (such as fame) that can motivate
a few people to review some other company’s proprietary product for security. Still, it has a
point; even formal reviews often only look at designs (not code), proprietary code is often
either unreviewed or poorly reviewed, and there are many cases (including the entire
OpenBSD system) where legions of developers review open source code for security issues.
As he notes, “open source has a lot of ‘white hats’ looking at the source. They often do find
security bugs while working on other aspects of the code, and the bugs are reported and
closed.”

OSS/FS programs can be evaluated using the formal security evaluations required by some
government agencies, such as the Common Criteria (ISO Standard 15408) and NIST FIPS
140, One complication has been that many governments have assumed that vendors would
pay for such evaluations on their own. This assumption is a poor match for many OSS/FS
projects, whose business models typically require that users who want a particular
improvement (such as an evaluation) pay for that improvement (in money or effort). This
doesn’t make formal security evaluations of OSS/FS projects impossible, but it may require
that customers change their approach to performing evaluations in some cases. In particular,
customers will need to not assume that vendors will do evaluations ‘for free.’ Part of the
problem is that many organizations’ acquisition strategies were defined before OSS/FS
became prevalent, and have not yet been adjusted to the widespread presence of OSS/FS.
Some OSS/FS programs have multiple project sites, so an organization must select exactly
what project to evaluate, but that‘s not really change; evaluations of proprietary programs
must select a specific version too.

Here are several reports on OSS/FS program evaluations:

1. The U.S. NIAP Validated Products List shows that Novell’s SuSE Linux Enterprise
Server V8 successfully passed a Common Criteria EAL3+ evaluation against the
Controlled Access Protection Profile (CAPP) in January 2004. Novell hopes to reach
EAL 4 by the end of 2004 (consistent with earlier reports).

2. Red Hat Enterprise Linux 3 passed an EAL2 evaluation in February 2004. Various
reports in IT Security and by Red Hat state that in August 2004 Red Hat Enterprise
Linux 3 was successfully against the Common Criteria EAL 3+ and the Controlled
Access Protection Profile (though it hasn’t appeared in the Validated Products List
yet). Red Hat also reports that they are working to complete an EAL 4 evaluation.

3. Mandrakesoft and others have won a 1 million Euro three-year contract to help create
a highly secure Linux based solution for the French Ministry of Defense that meets
Common Criteria Evaluation Assurance Level (EAL) 5.

4. Trusted Computer Solutions Inc. of Herndon, Va., expects to begin beta-testing
Trusted Linux this fall and seek Common Criteria certification at EAL 4 to meet not
only the Controlled Access Protection Profile (CAPP), but the additional
requirements of the Labeled Security Protection Profile, the Role-based Access
Control Protection Profile, and the requirements of Director of Central Intelligence
Directive 6/3.

5. The IBM Crypto for C (ICC) library received a FIPS 140-2 level 1 certificate #384 in
2004, and it uses the cryptographic library provided by OSS/FS OpenSSL.

6. The OSS/FS cryptographic library OpenSSL is being evaluated itself using the FIPS
140 evaluation process. The OpenSSL FAQ provides more information on an effort
to evaluate OpenSSL sponsored by HP and the Defense Medical Logistics Standard
Support program.

Some other interesting data about security can be found in Google Facts/Statistics question
about computer security and loss of data.

The “Alexis de Tocqueville Institute” (ADTI) published a white paper called “Opening the
Open Source Debate” that purported to examine OSS/FS issues. Unfortunately, ADTI makes
many wrong, specious, and poorly-argued claims about OSS/FS, including some related to
security. Wired (in its article Did MS Pay for Open-Source Scare?) made some startling
discoveries about ADTI; after querying, they found that “a Microsoft spokesman confirmed
that Microsoft provides funding to the Alexis de Tocqueville Institution... Microsoft did not
respond to requests for comment on whether the company directly sponsored the debate
paper. De Tocqueville Institute president Ken Brown and chairman Gregory Fossedal refused
to comment on whether Microsoft sponsored the report.” Politech found additional suspicious

information about ADTI, and UPI reported that ADTI receives a significant portion of its
funding from the Microsoft Corp, and thus it essentially lobbies in favor of issues important to
Microsoft. ADTI apparently has a history of creating “independent” results that are apparently
paid for by corporations (e.g., see the Smoke Free for Health article about ADTI’s pro-
tobacco-lobby papers). Reputable authors clearly identify any potential conflict of interest,
even if it’s incidental; ADTI did not.

The ADTI paper makes many errors and draws unwarranted conclusions. I’ll just note a few
examples of the paper’s problems that aren’t as widely noted elsewhere: incorrect or
incomplete quotations, rewriting web browser history, and cleverly omitting the most
important data in one of their charts:

• The ADTI “quotes” me several times in the paper, but in some cases claims I said
something I never said, and in others places them out of context by intentionally
omitting important things that I said. ADTI originally claimed that I said that
“without licensing the source code in a multilicense format, (referring to other more
permissive licenses), it is impossible for GPL to work for a proprietary business
model.” But I never said this. In fact, I specifically noted to ADTI that Microsoft sells
a GPL’ed product (a fact I’d already publicly published). Instead of removing the
statement, ADTI later made up a statement and claimed that I said it. What I really
said was more nuanced: “without licensing the source code in a multilicense format
[GPL and other licenses], the GPL does not permit certain kinds of uses in proprietary
business models.” The words are similar, but this is a much narrower statement. In
particular, ADTI’s Brown was essentially trying to claim that the GPL was essentially
incompatible with business, even though this wasn’t true, I told them it wasn’t true,
and even provided them with examples. ADTI also claims I said that “today I would
be confident that the number [of GPL software] has probably grown to 80%;” I only
said that I believed the number was probably larger than 50%, but since I couldn’t
remember the exact figures offhand, I told them to examine my papers - a trivial
search which ADTI did not do (if they had, they’d notice that I’d recently published
that 71.85% of Freshmeat’s software packages were covered by the GPL). More
intriguing are the omissions. For example, I explained to ADTI the GPL license
(which they did not understand, even though they were attacking it); ADTI seems to
think that the GPL requires public release of code, but it does not. The GPL only
requires that those who receive the binary executable receive the source code. This is
crucial, because it means you can still keep “secrets” in GPL’ed code, in spite of
ADTI’s implied assertion otherwise. Besides, there’s anecdotal evidence that the
government uses most GPL’ed code as-is, in which case these issues don’t apply - the
GPL permits arbitrary use and redistribution of unmodified copies.

• For a second example, the ADTI paper rewrites the history of web browsers in an
attempt to make its claims; it bases much on the claim that Mosaic was an open
source web browser, but it never was; modified versions of the Unix version could
only be used non-commercially without a separate license (OSS/FS must be usable
commercially), and the Mac and Windows licenses were even more restrictive. It also
completely omits the heavily publicized move of Netscape to OSS/FS in 1998, clearly
the most important event in web browser history relating to OSS/FS. I specifically
mentioned these problems to ADTI before they published their paper, but ADTI was
not willing to fix their paper to meet the facts.

• Switching to the third example, ADTI includes a chart of showing source lines of
code (SLOC) for various programs; it even references my paper More than a
Gigabuck while noting that the Linux kernel is over 2 million SLOC. The same chart
also reports that Windows XP is 30 million SLOC, an interesting statement since to
my knowledge this value has not been made public (ADTI has not revealed their
source, but has confirmed to me that they really meant Windows XP). But note the

invalid comparison - ADTI reports on the Linux kernel (a small part of an OS), and
Windows XP (a whole OS), but not on an whole OSS/FS OS. ADTI willfully ignores
my paper’s abstract and main point, which reported that the whole Red Hat Linux 7.1
distribution is also 30 million SLOC; by omitting the most important data, ADTI
gives false impressions. But these are merely the tip of the iceberg; the paper’s flaws
are so numerous, and discussing the flaws in its conclusions require so much effort,
that a serious rebuttal would require writing a whole separate paper.

Thus, I recommend that anyone who reads the ADTI paper also examine the detailed rebuttals
available from many different sources, since these rebuttals expose the paper’s numerous
flaws. Rebuttals are available from John Viega and Bob Fleck of Secure Software (Viega is a
respected security expert), Juliao Duartenn (Director of the Security Skill Center, Oblog
Software, SA), Roaring Penguin’s David Skoll (via the Register), Ken Ambrose (via LWN),
and Leon Brooks. Anthony Awtrey analyzed the changes made in the published editions of
the ADTI paper. Operating system expert Andrew Tanenbaum responded to ADTI’s later
claim that Torvalds stole Linux, and found that ADTI’s Ken Brown “doesn’t have a clue what
he is talking about,” was “confused about patents, copyrights, and trademarks,” failed to even
do basic research (he failed to consider original sources and didn’t bother to read the major
works on his subjects), and wrote “patent nonsense.” In short, ADTI’s paper is a highly biased
and poorly researched “report.”

All of this is unfortunate, because the real Alexis de Tocqueville strongly approved of the
OSS/FS’s underlying approaches. Alexis de Tocqueville remarked on the extraordinary
success in the United States of voluntary community associations to do many tasks, and
viewed them extremely favorably. He found such associations to be remarkably effective.

There are other non-quantitative discussions on OSS/FS and security. The October 2002
paper Open Source Digital Forensics Tools: The Legal Argument by Brian Carrier notes that
to enter scientific evidence into a United States court, a forensics tool must be reliable and
relevant as determined through the “Daubert” guidelines. The paper examines then those
guidelines and argues that “open source tools may more clearly and comprehensively meet
the [forensics] guidelines than closed source tools.” Stacey Quandt’s ”Linux and Windows
security compared” compares Windows and GNU/Linux security qualitatively; she concludes
that they’re comparable in network security/protocols, deployment and operations, and trusted
computing; Linux is superior in base security, application security, and open standards. The
only area where Windows was ahead was in assurance, because an EAL4 Common Criteria
evaluation has been completed for Windows; an EAL3 evaluation for a GNU/Linux has
completed, but an EAL4 evaluation for a GNU/Linux is in process but not yet complete.
Since an EAL4 GNU/Linux evaluation is expected to complete by around the end of 2004,
this doesn’t appear to be a long-lasting advantage for Windows.

Many security experts have stated that OSS/FS has advantages over the security of
proprietary software, including Whitfield Diffie (co-inventor of public key cryptography),
Bruce Schneier (expert on cryptography and computer security), Vincent Rijmen (a developer
of the Advanced Encryption Standard (AES)), Elias Levy (Aleph1, the former moderator of
the popular security discussion group Bugtraq). John Viega (author of a book on secure
programming), and Peter Neumann. This doesn’t guarantee that a particular OSS/FS program
is more secure than a particular proprietary product - merely that there are some fundamental
security advantages to easing public review.

In contrast, Microsoft’s Jim Allchin disclosed under oath in court testimony that some
Microsoft code was so flawed it could not be safely disclosed to the public. Yet more
recently, Microsoft announced its “Government Security Program” to allow governments to
view most source code (though not all code, and they cannot change and freely redistribute

the results). Indeed, Reuters reported a survey by Forrester Research Inc. that found that most
computer security experts at major companies do not think Microsoft Corporation’s products
are secure; 77% said security was a top concern when using Windows. The primary problem
reported was that patches were not implemented, because “administrators lacked both the
confidence that a patch won’t bring down a production system and the tools and time to
validate Microsoft’s avalanche of patches.”

Now it should be obvious from these figures that OSS/FS systems are not magically
invincible from security flaws. Indeed, some have argued that making the source code
available gives attackers an advantage (because they have more information to make an
attack). While OSS/FS gives attackers more information, this ignores opposing forces: having
the source code also gives the defenders more information (because they can also examine its
original source code), and in addition, the defenders can improve the code. More importantly,
the necessary information for breaking into a program is in the binary executable of the
program; disassemblers and decompilers can quickly extract whatever information is needed
from executables to break into a program, so hiding the source code isn’t all that helpful for
preventing attacks against attackers who are willing to use such programs. Even if source
code were required (it’s not), source code can often be acquired by attackers, either by simply
asking for it (in exchange for funds) or by acquiring the source code itself by attack. Again, it
is not true that proprietary programs are always more secure, or that OSS/FS is always more
secure, because there are many factors at work. For example, a well-configured and well-
maintained system, of any kind, will almost always be far more secure than a poorly
configured and unmaintained system of any kind. For a longer description of these issues, see
my discussion on open source and security (part of my book on writing secure software).
However, from these figures, it appears that OSS/FS systems are in many cases better - not
just equal - in their resistance to attacks as compared to proprietary software.

7. Total Cost of Ownership (TCO)
Total cost of ownership (TCO) is an important measure; it doesn’t matter if a product starts
out cheaply if it costs you more down the line. However, TCO is extremely sensitive to the set
of assumptions you make.

Indeed, whatever product you use or support, you can probably find a study to show it has the
lowest TCO for some circumstance. Not surprisingly, both Microsoft and Sun provide studies
showing that their products have the lowest TCO. Xephon has a study determining that
mainframes are the cheapest per-user (due to centralized control) at £3450 per user per year;
Centralized Unix cost £7350 per user per year, and a decentralized PC environment costs
£10850 per user per year. Xephon appears to be a mainframe-based consultancy, though, and
would want the results to come out this way. There are indeed situations where applying a
mainframe makes sense.. but as we’ll see in a moment, you can use OSS/FS in such
environments too.

In short, what has a smaller TCO depends on your needs and your environment. First, identify
what the requirements are, including the types of applications. You must then determine the
architectural options that meet these requirements. For example, GNU/Linux systems can be
implemented as independent client systems with a few common servers, just like most
Windows systems are. But there are many architectural alternatives, such as using X-
Windows terminals (programs run on a central server (so the client systems can be extremely
low-end “throw-away” systems), clustering (where tasks can be divided among many
computers), or use Stateless Linux (programs run locally on the computer, but since nothing is
stored locally, anyone can log into any computer later).

Then, to determine TCO you must identify all the important cost drivers (the “cost model”)
and estimate their costs. Don’t forget “hidden” costs, such as administration costs, upgrade
costs, technical support, end-user operation costs, and so on. Computer Sciences Corporation’
study “Open Source: Open for Business” (pp. 39-43) identifies the TCO factors that it
believes are most important for evaluating OSS/FS with proprietary software: hardware costs
(including purchase price and hardware maintenance), direct software costs (including
purchase price and support and maintenance), indirect software costs (especially
administration of licenses), staffing costs, support costs, and downtime (CSC claims that the
“modularity of Linux can allow a very lean build to be deployed, which in turn can enable
more stability...”).

OSS/FS has many strong cost advantages in various categories that, in many cases, will result
in its having the smallest TCO:

1. OSS/FS costs less to initially acquire. OSS/FS costs much less to get initially.
OSS/FS isn’t free in the monetary sense, because the “free” in “free software” refers
to freedom, not price. This distinction is usually summarized as “free speech, not free
beer”. Merrill Lynch executive Robert Lefkowitz found what may be a better way to
describe it: “We like to think of it as ‘free as in market.’”

OSS/FS isn’t cost-free, because you’ll still spend money for paper documentation,
support, training, system administration, and so on, just as you do with proprietary
systems. In many cases, the actual programs in OSS/FS distributions can be acquired
freely by downloading them (linux.org provides some pointers on how to get
distributions). However, most people (especially beginners and those without high-
speed Internet connections) will want to pay a small fee to a distributor for a nicely
integrated package with CD-ROMs, paper documentation, and support. Even so,
OSS/FS costs far less to acquire.

For example, examine the price differences when trying to configure a server, such as
public web server or an intranet file and email server, in which you’d like to use C++
and an RDBMS. This is simply an example; different missions would involve
different components. Using the prices from “Global Computing Supplies” (Suwanee,
GA), September 2000, rounded to the nearest dollar, here is a quick summary of the
purchasing costs:

 Microsoft Windows
2000 Red Hat Linux

Operating
System $1510 (25 client) $29 (standard), $76 deluxe, $156

professional (all unlimited)

Email Server $1300 (10 client) included (unlimited)

RDBMS Server $2100 (10 CALs) included (unlimited)

C++
Development $500 included

Basically, Microsoft Windows 2000 (25 client) costs $1510; their email server
Microsoft Exchange (10-client access) costs $1300, their RDBMS server SQL Server
2000 costs $2100 (with 10 CALs), and their C++ development suite Visual C++ 6.0
costs $500. Red Hat Linux 6.2 (a widely-used GNU/Linux distribution) costs $29 for
standard (90 days email-based installation support), $76 for deluxe (above plus 30
days telephone installation support), or $156 for professional (above plus SSL support

for encrypting web traffic); in all cases it includes all of these functionalities (web
server, email server, database server, C++, and much more). A public web server with
Windows 2000 and an RDBMS might cost $3610 ($1510+$2100) vs. Red Hat
Linux’s $156, while an intranet server with Windows 2000 and an email server might
cost $2810 ($1510+$1300) vs. Red Hat Linux’s $76.

Both packages have functionality the other doesn’t have. The GNU/Linux system
always comes with an unlimited number of licenses; the number of clients you’ll
actually use depends on your requirements. However, this certainly shows that no
matter what, Microsoft’s server products cost thousands of dollars more per server
than the equivalent GNU/Linux system.

For another in-depth analysis comparing the initial costs GNU/Linux with Windows,
see Linux vs. Windows: The Bottom Line by Cybersource Pty Ltd. Here’s a summary
of their analysis (in 2001 U.S. dollars):

 Microsoft
Solution

OSS/FS (GNU/Linux)
Solution

Savings by using
GNU/Linux

Company A (50
users) $69,987 $80 $69,907

Company B (100
users) $136,734 $80 $136,654

Company C (250
users) $282,974 $80 $282,894

Consulting Times found that as the number of mailboxes got large, the three-year
TCO for mainframes with GNU/Linux became in many cases quite compelling. For
50,000 mailboxes, an Exchange/Intel solution cost $5.4 million, while the
Linux/IBM(G6) solution cost $3.3 million. For 5,000 mailboxes, Exchange/Intel cost
$1.6 million, while Groupware on IFL cost $362,890. For yet another study, see the
Cost Comparison from jimmo.com. Obviously, the price difference depends on
exactly what functions you need for a given task, but for many common situations,
GNU/Linux costs far less to acquire.

2. Upgrade/maintenance costs are typically far less. Long-term upgrade costs are far
less for OSS/FS systems. For example, upgrading a Microsoft system will typically
cost around half the original purchase. What’s worse, you are essentially at their
mercy for long-term pricing, because there is only one supplier (see Microsoft Turns
the Screws). In contrast, the GNU/Linux systems can be downloaded (free), or simply
re-purchased (generally for less than $100), and the single upgrade be used on every
system. This doesn’t include technical support, but the technical support can be
competed (a situation that’s not practical for proprietary software). An anti-trust
lawyer would say that OSS/FS technical support is “contestable.” In short, if you
don’t like your GNU/Linux supplier (e.g., they’ve become too costly), you can
switch.

3. OSS/FS does not impose license management costs and avoids nearly all
licensing litigation risks. Proprietary vendors make money from the sale of licenses,
and are imposing increasingly complex mechanisms on consumers to manage these
licenses. Customers who cannot later prove than they paid for every installed copy of
proprietary software (e.g., due to copying by an employee or losing the license
paperwork) risk stiff penalties. In short: by using proprietary software, you run the
risk of having the vendor sue you.

To counter these risks, organizations must keep careful track of license purchases.
This means that organizations must impose strict software license tracking processes,
purchase costly tracking programs, and pay for people to keep track of these licenses
and perform occasional audits.

In contrast, there’s no license management or litigation risk in using OSS/FS
software. Some OSS/FS software do have legal requirements if you modify the
program or embed the program in other programs, but proprietary software usually
forbids modifying the program and often also imposes licensing requirements for
embedding a program (e.g., royalty payments). Thus, software developers must
examine what components they’re employing to understand their ramifications, but
this would be true for both OSS/FS and proprietary programs. See the licensing
litigation discussion later in this paper for more about licensing costs and risks.

4. OSS/FS can often use older hardware more efficiently than proprietary systems,
yielding smaller hardware costs and sometimes eliminating the need for new
hardware. OSS/FS runs faster on faster hardware, of course, but many OSS/FS
programs can use older hardware more efficiently than proprietary systems, resulting
in lower hardware costs - and in some cases requiring no new costs (because
“discarded” systems can suddenly be used again). For example, the minimum
requirements for Microsoft Windows 2000 Server (according to Microsoft) are a
Pentium-compatible CPU (133 MHz or higher), 128 MiB of RAM minimum (with
256MiB the “recommended minimum”), and a 2 GB hard drive with at least 1.0 GB
free. According to Red Hat, Red Hat Linux 7.1 (a common distribution of
GNU/Linux) requires at a minimum an i486 (Pentium-class recommended), 32MiB
RAM (64MiB recommended), and 650MB hard disk space (1.2 GB recommended).

In Scientific American’s August 2001 issue, the article The Do-It-Yourself
Supercomputer discusses how the researchers built a powerful computing platform
with many discarded computers and GNU/Linux. The result was dubbed the “Stone
Soupercomputer”; by May 2001 it contained 133 nodes, with a theoretical peak
performance of 1.2 gigaflops.

5. When used as an application server based system, the total costs for hardware
drop by orders of magnitude. Many people make the mistake of deploying OSS/FS
workstations (such as GNU/Linux or the *BSDs) the same way they would deploy
Windows systems. Although it’s possible, this is an unnecessarily costly approach if
they’re installing a set of workstations for typical productivity applications (e.g., word
processing, spreadsheets, etc. for an office), For many, a better approach is to provide
each user with a very old GNU/Linux-based machine which is merely a graphics
display (an “X terminal”), and then run the actual applications on an “application
server” that is shared by all the users. See How to create a Linux-based network of
computers for peanuts for more information about this. With this application server
approach, workstations can cost about $30 each (using “obsolete” machines), a server
(shared by many users) can cost about $1000 each, and nearly all system
administration is centralized (reducing administration costs). A nice side-effect of this
approach is that users can use any workstation just by logging in. A more detailed
discussion of this approach is given in Paul Murphy’s article, Total cost of ownership
series revisited. Linux Style: Windows PCs vs. X Terminals: A Cost Comparison
describes how the Mark O. Hatfield Library at Willamette University has used
networked X terminals in its public and staff computing environments since 1995.
The 15-year cost of 25 Linux systems in this environment is estimated to be $41,359
versus a 15-year cost of $100,000 to $155,000 for Windows PCs serving the same

function. This is how the City of Largo, Florida, and many other organizations use
GNU/Linux.

6. As the number of systems and hardware performance increases, this difference
in initial and upgrade costs becomes even more substantial. As the number of
servers increases, proprietary solutions become increasingly costly. First, many
proprietary systems (including Microsoft) sell per-client licenses; this means that
even if your hardware can support more clients, you’ll must pay more to actually use
the hardware you’ve purchased. Secondly, if you want to use more computers, you
must pay for more licenses in proprietary systems. In contrast, for most GNU/Linux
distributions, you can install as many copies as you like for no additional fee, and
there’s no performance limit built into the software. There may be a fee for additional
support, but you can go to competing vendors for this support.

According to Network World Fusion News, Linux is increasingly being used in
healthcare, finance, banking, and retail due to its cost advantages when large numbers
of identical sites and servers are built. According to their calculations for a 2,000 site
deployment, SCO UnixWare would cost $9 million, Windows would cost $8 million,
and Red Hat Linux costs $180.

7. There are many other factors; their effect varies on what you’re trying to do.
There are many other factors in TCO, but it’s difficult to categorize their effects in
general, and it’s generally difficult to find justifiable numbers for these other effects.
Windows advocates claim that system administrators are cheaper and easier to find
than Unix/Linux administrators, while GNU/Linux and Unix advocates argue that
fewer such administrators are needed (because administration is easier to automate
and the systems are more reliable to start with). Various reports have mentioned this
(a Red Hat executive stated that one Wall Street bank has one administrator for 800
machines), quantitative studies are beginning to back this claim that fewer
administrators are needed. Some GNU/Linux advocates have told me that
GNU/Linux lends itself to hosting multiple services on one server in cases where
Windows installations must use multiple servers. License compliance administration
can be costly for proprietary systems (e.g., time spent by staff to purchase CALS,
keep track of licenses, and undergo audits) - a cost that simply isn’t relevant to
OSS/FS.

8. Cybersource’s 2002 study found TCO savings of 24% to 34% when using
OSS/FS instead of Microsoft’s proprietary approach. Cybersource’s “Linux vs.
Windows: Total Cost of Ownership Comparison” modeled an organization with 250
computer-using staff, an appropriate number of workstations, servers, with Internet
connectivity, an e-business system, network cabling and hardware, standard software,
and salaries for IT professionals to establish and support this infrastructure and
technology. Using existing hardware and infrastructure, they found a three-year
savings of 34.26% ($251,393 U.S. dollars) when using the “Linux/Open Source
Solution” instead of the proprietary “Microsoft solution”. When new hardware and
infrastructure were purchased, the savings were 24.69%. Note that this study is a
follow-on of their earlier study; a commentary is available at Linux Journal. It could
be argued that this was merely a paper study, but they claim that they’ve seen
significant savings in their consulting work. In any case, TCO savings have been
reported by real organizations, corroborating these results, as discussed below.

9. An Italian study in 2002 found GNU/Linux to have a TCO 34.84% less than
Windows. The full study is in Italian; you can try to read an automatically-generated
translation.

10. For many circumstances, the total cost savings can be substantial. For example,
real-world savings exceeding $250,000 per year were reported by 32% of the
Chief Technical Officers (CTOs) surveyed in a 2001 InfoWorld survey; 60% of

these CTOs saved over $50,000 annually. The August 27, 2001 InfoWorld (pages
49-50) reported on a survey of 40 CTOs who were members of the InfoWorld CTO
network. In this survey, 32% using OSS reported savings greater than $250,000; 12%
reported savings between 100,001 and $250,000; and 16% reported saving between
$50,001 and $100,000. Indeed, only 8% reported annual savings less than $10,000 (so
92% were saving $10,000 or more annually). A chief benefit of OSS, according to
93% of the CTOs, was reduced cost of application development or acquisition; 72%
said that a chief benefit was reduced development or implementation time (multiple
answers were allowed). The CTOs reported using or planning to use OSS for web
servers (65%), server OSes (63%), web-application servers (45%), application
development testing (45%), and desktop OS (38%), among other uses. InfoWorld
summarized it this way: “in early 2000, it seemed as if no one was using open-source
software for business-critical tasks... a vast majority of today’s corporate IT
executives are now using or plan to use OSS OSes and web servers for their
enterprise applications.”

11. The Robert Frances Group’s July 2002 study found the TCO of GNU/Linux is
roughly 40% (less than half) that of Microsoft Windows and only 14% that of
Sun Microsystem’s Solaris. The Robert Frances Group (RFG), in Westport, Conn.,
studied actual costs at production deployments of Web servers running on
GNU/Linux with Apache, Microsoft Windows with IIS, and Sun Solaris with Apache
at 14 Global 2000 enterprises. These are real deployments where, if the web server
goes down, money is lost - not minor prototype sites. Their TCO analysis was based
on the software purchase price, hardware purchase and maintenance prices, software
maintenance and upgrade prices, and administrative costs. To make the numbers
comparable, these figures were were scaled to a “processing unit” able to handle
100,000 hits per day; see the study for more information. They determined that over
three years a (scaled) GNU/Linux deployment cost $74,475, a Windows deployment
cost $190,662, and a Solaris deployment cost $534,020. Thus, the cost of running
GNU/Linux is roughly 40% that of Microsoft Windows and only 14% that of Sun
Microsystem’s Solaris.

This report also found that GNU/Linux and Solaris had smaller administrative costs
than Windows. Although Windows system administrators cost less individually, each
Linux or Solaris administrator could administrate many more machines, making
Windows administration much more costly. The study also revealed that Windows
administrators spent twice as much time patching systems and dealing with other
security-related issues than did Solaris or GNU/Linux administrators.

RFG also examined some areas that were difficult to monetize. In the end, they
concluded that “Overall, given its low cost and flexible licensing requirements, lack
of proprietary vendor goals, high level of security, and general stability and usability,
Linux is worth considering for most types of server deployments.”

12. Netproject reported that the TCO with Linux on the desktop was 35% that of
Microsoft Windows (a 65% savings). Netproject’s Cost of Ownership report found
a very significant savings, and it reported the following causes:

o The elimination of license fees for both the system software and office
software;

o Elimination of vendor churn that forces unnecessary software updates;
o Reduction in the number of software security updates;
o No need for anti-virus software for Linux computers [anti-virus software for

Linux is only needed to check for viruses that run on Microsoft PCs];
o Reduction in the number of support staff.

13. A majority of InternetWeek Newsbreak subscribers from companies with over
$5 million in revenues reported that OSS/FS software costs substantially less
than proprietary software.

A survey was by TheOpenEnterprise.com (a joint editorial effort between
InternetWeek.com and InformationWeek) of individuals with management
responsibility for IT and software specifically in companies with over $5 million in
revenue. In this survey, 39% said “open source/standards-based software” costs 25%
to 50% less than proprietary software, while 27% (over 1 in 4) said it’ costs 50% to
75% less. In context, it appears their phrase was intended to mean the same (or
similar) thing as the term OSS/FS in this paper, since in many cases they simply use
the term “open-source.” As they note, “Would your CFO react favorably to a 50-75%
reduction in software costs?”

14. A report by Research and Markets found a number of caes where deploying open
source software resulted in significant savings. The report Saving Cash: A
Comparison of Open Source and Proprietary Software (Oct 2004, 95 pages) on
OSS/FS in Germany shows significant saving potentials through the deployment of
open source software for different company sizes. The study found that the risk for
users on account of copyright or patent violations is minimal. A set of interviews
were used to create a detailed TCO model, and they perform calculations with typical
case studies. Warning: This is an expensive report.

15. Many organizations report significant savings when using OSS/FS. Here are a
few examples of specific organizations saving money through OSS/FS:

a. The analysis Linux as a Replacement for Windows 2000 compares Red Hat
Linux 7.1 to Windows 2000; in this customer’s case, using Linux instead of
Windows 2000 saved $10,000. The reviewer came from a Windows/DOS
background, and after performing an intensive hands-on Linux project lasting
several months, determined that “you will be stunned by the bang for the
buck that ... open source software offers.”

b. Intel’s IT Vice President, Doug Busch, reported savings of $200 million by
replacing costly Unix servers with cheaper servers running GNU/Linux.

c. Amazon.com was able to cut $17 million in technology expenses in a single
quarter, largely due to a switch to Linux. Amazon spent $54 million on
technology and content expenses in its third quarter (ending Sept. 30),
compared with $71 million in the year-ago quarter, and executives expected
that technology costs as a portion of net sales would decrease by 20% this
year.

d. The city of Largo, Florida reports a savings of $1 million per year using
GNU/Linux and “thin clients.”

e. Dell offers a savings of 21% when using GNU/Linux. Dell computer has a
dedicated hosting service, such as their D-2800 offering. This service offers a
respectable system (Pentium 850, 256MiB, 20GB, 21GB/month bandwidth)
in two configurations: Red Hat Linux 7.1 for $189/month, and Windows
2000 for $239/month. Thus, with identical hardware and bandwidth
provision, the GNU/Linux system is 21% cheaper. This is especially
interesting because Dell is not out to prove which system is better; as a
business, they’ve just figured out competitive prices at which they can offer
their services.

f. An independent report in Denmark concluded that if the political goals for
using the Internet to improve the public sector are to be fulfilled, it would be
$500 million cheaper over the next 10 years to use OSS/FS instead of
Microsoft software (my thanks to Poul-Henning Kamp, who translated the
conclusions).

There are many other reports from those who have switched to OSS/FS systems; see
the usage reports section for more information.

16. Even Microsoft has admitted that its products are more costly than GNU/Linux.
For some time Microsoft has tried to convince users that its products are somehow
less costly. However, as documented in Var Business and The Register, Microsoft
CEO Steve Ballmer in 2002 admitted that Microsoft has not “figured out how to be
lower-priced than Linux. For us as a company, we’re going through a whole new
world of thinking.” The Register summarizes Microsoft’s new approach as saying
that “it costs more because it’s worth more”; whether this is true is rather debatable in
many cases, but at least it’s a more sensible argument. However, Microsoft has gone
back to trying to claim that they cost less, so the detail in this section is still needed.

17. A Microsoft-sponsored study claims that Windows is cheaper than Linux, but
this has been debunked as a general claim. The Microsoft-sponsored study
(available from Microsoft) compared Windows 2000 to Linux; it stated that Linux
had lower TCO for webserving, and Windows 2000 had a lower TCO for network
infrastructure, print serving, file serving and security applications (note: the “David
Wheeler” quoted in InfoWorld is not the author of this paper). I will give credit here:
unlike the Mindcraft reports sponsored by Microsoft, this TCO report clearly states
that it was sponsored by Microsoft, and I appreciate that.

It’s important to examine the assumptions of any TCO study, to see if its assumptions
could apply to many other situations - and it is easily argued that they don’t. Joe Barr
discusses some of the problems in this TCO study. These include assuming that the
operating system is never upgraded in a 5-year period, using an older operating
system Microsoft is transitioning from, and not using the current Enterprise license
agreement (which many organizations find they must use). Costs that are not included
in the study include legal advice costs (when signing large-scale agreements),
purchase and maintenance of a software license inventory system (which you’ll
generally need even with Enterprise agreements), costs if you are audited, cost of
insurance and liability incidents (if a proof of purchase is misplaced, you might need
to pay the $151,000 per-incident liability), and paying multiple times for the same
product (a side-effect of many Enterprise license agreements).

Barr concludes with: “TCO is like fine wine: it doesn’t travel well. What may be true
in one situation is reversed in another. What gets trumpeted as a universal truth (
‘Windows is cheaper than Linux’) may or may not be true in a specific case, but it is
most certainly false when claimed universally.” Since the TCO of a system depends
on its application, and Microsoft as sponsor could specifically set all of the
parameters, the conclusions of the report were easily predicted.

18. Another Microsoft-sponsored study claims that Microsoft’s toolsuite with .NET
is cheaper than using GNU/Linux with J2EE. This Giga Research study sponsored
by Microsoft compared the costs incurred by five large and medium-size companies
that used J2EE (Java 2 Enterprise Edition) with the costs incurred by seven large and
medium-size companies that used .Net applications to develop Web portal
applications. For large corporations, the cost of using Microsoft products (for
development and deployment plus three years of maintenance) was 28% less than for
J2EE/Linux. For medium-size companies, the Microsoft products were 25% cheaper.

However, once again, the TCO values all hinge on the assumptions made. As
CIO.com points out, the Microsoft-based solution was cheaper primarily because the
GNU/Linux systems were configured using extremely expensive proprietary products

such as those from Oracle (for the database system) and BEA (for the development
system).

A company can certainly choose to use these particular products when developing
with GNU/Linux, but not all organizations will choose to do so. Indeed, the acronym
“LAMP” (Linux, Apache, MySQL, and PHP/Python/Perl) was coined because that
combination is extremely popular when creating web portal applications. MySQL and
PostgreSQL are popular OSS/FS database programs; PHP, Python, and Perl are
popular OSS/FS development languages (and tie easily into the rest of the
development suite provided by OSS/FS operating systems). An obvious question to
ask is, “Why were extremely common configurations (such as LAMP) omitted in this
Microsoft-funded study?” CIO.com reports Giga’s answer: “Microsoft didn’t ask
them [to] look at any such companies.”

Again, I give credit to Giga for clearly reporting who funded the study. Indeed, if
your situation closely matches Giga’s study, your costs might be very similar. But it
would be a mistake to conclude that different situations would necessarily have the
same results.

You may also want to see MITRE Corporation’s business case study of OSS, which
considered military systems.

Most of these items assume that users will use the software unmodified, but even if the
OSS/FS software doesn’t do everything required, that is not necessarily the end of the story.
One of the main hallmarks of OSS/FS software is that it can be modified by users. Thus, any
true TCO comparison should consider not just the products that fully meet the requirements,
but the existing options that with some modifications could meet the requirements. It may be
cheaper to start with an existing OSS/FS program, and improve it, than to start with a
proprietary program that has all of the necessary functionality. Obviously, the total TCO
including such costs varies considerably depending on the circumstances.

Brendan Scott (a lawyer specializing in IT and telecommunications law) argues that the long
run TCO of OSS/FS must be lower than proprietary software. Scott’s paper makes some
interesting points, for example, “TCO is often referred to as the total cost of ‘ownership’...
[but] ‘ownership’ of software as a concept is anathema to proprietary software, the
fundamental assumptions of which revolve around ownership of the software by the vendor.
... The user [of proprietary software] will, at best, have some form of (often extremely
restrictive) license. Indeed, some might argue that a significant (and often uncosted)
component of the cost of ‘ownership’ of proprietary software is that users don’t own it at all.”
The paper also presents arguments as to why GPL-like free software gives better TCO results
than other OSS/FS licenses. Scott concludes that “Customers attempting to evaluate a free
software v. proprietary solution can confine their investigation to an evaluation of the ability
of the packages to meet the customer’s needs, and may presume that the long run TCO will
favor the free software package. Further, because the licensing costs are additional dead
weight costs, a customer ought to also prefer a free software solution with functionality
shortfalls where those shortfalls can be overcome for less than the licensing cost for the
proprietary solution.”

Microsoft’s first TCO study comparing Windows to Solaris (mentioned earlier) is not a useful
starting point for estimating your own TCO. Their study reported the average TCO at sites
using Microsoft products compared to the average TCO at sites using Sun systems, but
although the Microsoft systems cost 37% less to own, the Solaris systems handled larger
databases, more demanding applications, 63% more concurrent connections, and 243% more
hits per day. In other words, the Microsoft systems that did less work cost less than systems

that did more work. This is not a useful starting point if you’re using TCO to help determine
which system to buy - to make a valid comparison by TCO, you must compare the TCOs of
systems that meet your requirements. A two-part analysis by Thomas Pfau (see part 1 and part
2) identifies this and many other flaws in the study.

There are some studies that emphasize Unix-like systems, not OSS/FS, which claim that that
there are at least some circumstances where Unix-like systems are less costly than Windows.
A Strategic Comparison of Windows vs. Unix by Paul Murphy is one such paper. It appears
that many of these arguments would also apply to OSS/FS systems, since many of them are
Unix-like.

Be sure that you actually compute your own TCO; don’t just accept a vendor’s word for it,
and in particular, don’t just accept a vendor’s claims for the TCO of its competitors. In 2004
Newham council chose Microsoft products over a mixed solution, reporting that their selected
solution had a lower TCO according to an independent study. Yet when the reports were
made public in September 2004, it was discovered that it was Microsoft who created the cost
figures of switching to their competitor - not an independent source at all. Any vendor (open
or closed) can tell you why their competitor costs more money, if you naïvely let them.

Again, it’s TCO that matters, not just certain cost categories. However, given these large
differences in certain categories, in many situations OSS/FS has a smaller TCO than
proprietary systems. At one time it was claimed that OSS/FS installation took more time, but
nowadays OSS/FS systems can be purchased pre-installed and automatic installers result in
equivalent installation labor. Some claim that system administration costs are higher, but
studies like Sun’s suggest than in many cases the system administration costs are lower, not
higher, for Unix-like systems (at least Sun’s). For example, on Unix-like systems it tends to
be easier to automate tasks (because you can, but do not need, to use a GUI) - thus over time
many manual tasks can be automated (reducing TCO). Retraining costs can be significant -
but now that GNU/Linux has modern GUI desktop environments, there’s anecdotal evidence
that this cost is actually quite small. I’ve yet to see serious studies quantitatively evaluating
this issue, but anecdotally, I’ve observed that people familiar with other systems are generally
able to sit down and use modern GNU/Linux GUIs without any training at all. In short, it’s
often hard to show that a proprietary solution’s purported advantages really help offset their
demonstrably larger costs in other categories when there’s a competing mature OSS/FS
product for the given function.

Factors that need to be included in a TCO analysis is switching costs; most people remember
to include the costs of switching to something, but forget to include the extremely important
costs of switching away from it later. As noted in ???, Linux Adoption in the Public Sector:
An Economic Analysis by Hal R. Varian and Carl Shapiro (University of California,
Berkeley; 1 December 2003), “a system that will be difficult to switch away from in the
future, in part because the lock-in associated with using such a system[,] will reduce their
future bargaining power with their vendor. Vendors always have some incentive to make it
difficult for users to switch to alternatives, while the users will generally want to preserve
their flexibility. From the user’s viewpoint, it is particularly important to make sure that file
formats, data, system calls, APIs, interfaces, communication standards, and the like are well
enough documented that it is easy to move data and programs from one vendor to another.”
Obviously, someone who elects to use a proprietary program that locks them into that specific
program will almost certainly pay much higher prices in future updates, because the vendor
can exploit the user’s difficulty in changing.

Clearly, if one product is significantly more productive than another where it’s used, it’s
worth paying more for it. However, it’s clear that at least for major office tasks, GNU/Linux
systems are about as usable as Windows systems. For example, one usability study comparing

GNU/Linux to Microsoft Windows XP found that it was almost as easy to perform most
major office tasks using GNULinux as with Windows: “Linux users, for example, needed
44.5 minutes to perform a set of tasks, compared with 41.2 minutes required by the XP users.
Furthermore, 80% of the Linux users believed that they needed only one week to become as
competent with the new system as with their existing one, compared with 85% of the XP
users.” The detailed report (in German) is also available.

Does this mean that OSS/FS always have the lowest TCO? No! As I’ve repeatedly noted, it
depends on its use. But the notion that OSS/FS always has the larger TCO is simply wrong.

8. Non-Quantitative Issues
In fairness, I must note that not all issues can be quantitatively measured, and to many they
are the most important issues. The issues important to many include freedom from control by
another (especially a single source), protection from licensing litigation, flexibility, social /
moral / ethical issues, and innovation.

1. OSS/FS protects its users from the risks and disadvantages of single source
solutions. While “free software” advocates use the term “freedom,” and some
businesses emphasize different terms such as “free market”, “multiple sources”,
“alternate supply channels”, and “the necessity of multiple vendors”, the issue is the
same: users do not want to be held hostage by any one vendor. Businesses often
prefer to buy products in which there is a large set of competing suppliers, because it
reduces their risk; they can always switch to another supplier if they’re not satisfied,
the supplier raises their prices substantially, or the original supplier goes out of
business. This translates into an effect on the products themselves: if customers can
easily choose and switch between competing products, the products’ prices go down
and their quality goes up. Conversely, if there is a near or real monopoly for a given
product, over time the vendor will continuously raise the cost to use the product and
limit its uses to those that benefit the monopolist. Users who are unwilling to leave
single source solutions often pay dearly later as their single source raises their costs.

For example, many organizations have chosen to use Microsoft’s products
exclusively, and Microsoft is trying to exploit this through its new “Microsoft
Licensing 6.0 Program.” The TIC/Sunbelt Software Microsoft Licensing Survey
Results (covering March 2002) reports the impact on customers of this new licensing
scheme. 80% had a negative view of the new licensing scheme, noting, for example,
that the new costs for software assurance (25% of list for server and 29% of list for
clients) are the highest in the industry. Of those who had done a cost analysis, an
overwhelming 90% say their costs will increase if they migrate to 6.0, and 76% said
their costs would increase from 20% to 300% from what they are paying now under
their current 4.0 and 5.0 Microsoft Licensing plans. This survey found that 36% of
corporate enterprises don’t have the funds to upgrade to the Microsoft Licensing 6.0
Program. Half indicated that the new agreement would almost certainly delay their
migration initiatives to new Microsoft client, server and Office productivity
platforms, and 38% say they are actively seeking alternatives to Microsoft products.
In New Zealand a Commerce Commission Complaint has been filed claiming that
Microsoft’s pricing regime is anti-competitive. Craig Horrocks notes that the
Software Assurance approach does not assure that the purchaser receives anything for
the money; it merely buys the right to upgrade to any version Microsoft releases in
the covered period. Microsoft may levy further charges on a release, and the contract
does not obligate Microsoft to deliver anything in the time period.

There are increasing concerns about Microsoft’s latest releases of Windows. Michael
Jennings argues in Windows XP Shows the Direction Microsoft is Going that
Microsoft users are increasingly incurring invasion of privacy, intentionally crippled
yet necessary services, and other problems.

More generally, defining an organization’s “architecture” as being whatever one
vendor provides is sometimes called “Vendor Lock-in” or “Pottersville”, and this
“solution” is a well-known AntiPattern (an AntiPattern is a “solution” that has more
problems than it solves).

Having only one vendor completely control a market is dangerous from the viewpoint
of costs (since the customer then has no effective control over costs), and it also raises
a security concern: the monoculture vulnerability. In biology, it is dangerous to
depend on one crop strain, because any disease can cause the whole crop to fail.
Similarly, one proprietary vendor who completely controls a market creates a
uniformity that is far easier to massively attack. OSS/FS programs provide an
alternative implementation, and even when one dominant OSS/FS program exists,
because they can be changed (because the source code is available) at least some
implementations are likely to be more resistant to attack.

Historically, proprietary vendors eventually lose to vendors selling products available
from multiple sources, even when their proprietary technology is (at the moment)
better. Sony’s Betamax format lost to VHS in the videotape market, IBM’s
microchannel architecture lost to ISA in the PC architecture market, and Sun’s NeWS
lost to X-windows in the networking graphics market, all because customers prefer
the reduced risk (and eventually reduced costs) of non-proprietary products. This is
sometimes called “commodification”, a term disparaged by proprietary vendors and
loved by users. Since users spend the money, users eventually find someone who will
provide what they want, and then the other suppliers discover that they must follow or
give up the market area.

With OSS/FS, users can choose between distributors, and if a supplier abandons them
they can switch to another supplier. As a result, suppliers will be forced to provide
good quality products and services for relatively low prices, because users can switch
if they don’t. Users can even band together and maintain the product themselves (this
is how the Apache project was founded), making it possible for groups of users to
protect themselves from abandonment.

The article Commentary from a new user: Linux is an experience, not an operating
system, describes freedom this way:

“As I worked in Linux... the word ‘free’ took on a far greater meaning. As the
advocates of the Open Source and Free Software movements put it, free means
freedom. Yes, as a humble user of Linux, I am experiencing freedom and pride in
using a world-class operating system.

Linux is not only an operating system. It embodies a myriad of concepts about how
the world of computers and software should be. This is an operating system designed
by the world, meant for the world. Everyone who is interested in Linux, can develop,
share and use it. People can contribute their best in programming, documenting or in
any aspect of their choice. What a novel concept!

Free in Linux spells freedom -- freedom to use Linux, freedom to use the code,
freedom to tweak and improve it. Not being a programmer, I still can be happy about

many things. For me, freedom has meant that my operating system is transparent, and
there are no hidden codes at work in my computer. Nothing about Linux is hidden
from me. ... I’ve gained more control over my computer for the first time in my life.”

2. OSS/FS protects its users from licensing litigation and management costs.
Proprietary vendors make money from the sale of licenses, and are imposing
increasingly complex mechanisms on consumers to manage these licenses. For
example, Microsoft’s Windows XP requires product activation - a scheme that means
that an accumulation of hardware changes requires a new activation code. A license
no longer gives unlimited rights to reinstall - if you have hardware trouble, you may
end up being forced to re-buy your product. Indeed, for a variety of reasons,
businesses are finding that they must buy the same proprietary software more than
once.

Proprietary vendors also litigate against those who don’t comply with their complex
licensing management requirements, creating increased legal risks for users. For
example, the Business Software Alliance (BSA) is a proprietary software industry
organization sponsored by Microsoft, Macromedia, and Autodesk, and spends
considerable time searching for and punishing companies who cannot prove they are
complying. As noted in the SF Gate (Feb. 7, 2002), the BSA encourages disgruntled
employees to call the BSA if they know of any license violations. “If the company
refuses to settle or if the BSA feels the company is criminally negligent and
deliberately ripping off software, the organization may decide to get a little nastier
and organize a raid: The BSA makes its case in front of a federal court in the
company’s district and applies for a court order. If the order is granted, the BSA can
legally storm the company’s offices, accompanied by U.S. marshals, to search for
unregistered software.”

Software Licensing by Andrew Grygus discusses the risks and costs of proprietary
licensing schemes in more detail. According to their article, “the maximum penalty is
$150,000 per license deficiency; typically, this is negotiated down, and a company
found deficient at around $8,000 will pay a penalty of around $85,000 (and must buy
the $8,000 in software too).” For example, information services for the city of
Virginia Beach, VA were practically shut down for over a month and 5 employees
(1/4th of their staff) had to be dedicated to put its licensing in order to answer a
random audit demand by Microsoft, at a cost of over $80,000. Eventually the city was
fined $129,000 for missing licenses the city had probably paid for but couldn’t match
to paperwork. Temple University had to pay $100,000 to the BSA, in spite of strong
policies forbidding unauthorized copying.

To counter these risks, organizations must keep careful track of license purchases.
This means that organizations must impose strict software license tracking processes,
purchase costly tracking programs, and pay for people to keep track of these licenses
and perform occasional audits.

A related problem is that companies using proprietary software must, in many cases,
get permission from their software vendors to sell a business unit that uses the
proprietary software, or face legal action. For example, Microsoft has filed objections
to Kmart’s proposed $8.4 million sale of Bluelight.com to United Online Inc., citing
software licensing as one of their concerns. Microsoft stated that “The licenses that
debtors (Kmart) have of Microsoft’s products are licenses of copyrighted materials
and, therefore, may not be assumed or assigned with[out] Microsoft’s consent.”
Whether or not this is a risk depends on the licensing scheme used; in many cases it
appears that the legal “right of first sale” doctrine cannot be applied (for example,

there are many different licensing schemes for Windows, so the same action with
Windows may be legal or not depending on the licensing scheme used to acquire it).

In contrast, OSS/FS users have no fear of litigation from the use and copying of
OSS/FS. Licensing issues do come up when OSS/FS software is modified and then
redistributed, but to be fair, proprietary software essentially forbids this action (so it’s
a completely new right). Even in this circumstance, redistributing modified OSS/FS
software generally requires following only a few simple rules (depending on the
license), such as giving credit to previous developers and releasing modifications
under the same license as the original program.

One intriguing example is the musical instrument company Ernie Ball, described in
World Trade, May 2002. A disgruntled ex-employee turned them into the Business
Software Alliance (BSA); who then arranged to have them raided by armed Federal
Marshals. Ernie Ball was completely shut down for a day, and then was required to
not touch any data other than what is minimally needed to run their business. After
the investigation was completed, Ernie Ball was found to be noncompliant by 8%;
Ball argued that it was “nearly impossible to be totally compliant” by their rules, and
felt that they were treated unfairly. The company ended up paying a $90,000
settlement, $35,000 of which were Microsoft’s legal fees. Ball then decided at that
moment his company would become “Microsoft free.” In one year he converted to a
Linux-based network and UNIX “mainframe” using Sun’s StarOffice (Sun’s
proprietary cousin to OpenOffice); he now has no Microsoft products at all, and much
of the software is OSS/FS or based on OSS/FS products.

3. OSS/FS has greater flexibility. OSS/FS users can tailor the product as necessary to
meet their needs in ways not possible without source code. Users can tailor the
product themselves, or hire whoever they think can solve the problem (including the
original developer). Some have claimed that this creates the “danger of forking,” that
is, of multiple incompatible versions of a product. This is “dangerous” only to those
who think competition is evil - we have multiple versions of cars as well. And in
practice, the high cost of maintaining software yourself has resulted in a process in
which the change is contributed back to the community. If it’s not contributed (e.g., it
solves a problem that needed solving but only for a specialized situation), then it’s
still a win for the user - because it solved a user’s problem which would have been
unsolved otherwise.

For example, in 1998 Microsoft decided against developing an Icelandic version of
Windows 95 because the limited size of the market couldn’t justify the cost. Without
the source code, the Islandic people had little recourse. However, OSS/FS programs
can be modified, so Icelandic support was immediately added to them, without any
need for negotiation with a vendor. In contrast, in July 2004, Welch support for in the
OSS/FS OpenOffice.org became available, the first complete office environment
available in Welsh. Users never know when they will have a specialized need not
anticipated by their vendor; being able to change the source code makes it possible to
support those unanticipated needs.

4. Many believe that there are social, moral, or ethical imperatives for using
OSS/FS. The Free Software Foundation has a set of papers describing their
philosophy, i.e., why they believe Free Software is an ethical imperatives. These
lengthy documents explain themselves in depth, so there’s little need to describe them
further here.

5. There is ample evidence that OSS/FS encourages, not quashes, innovation.
Innovation is a strength, not a liability, for OSS/FS. InformationWeek’s survey of

business-technology professionals “Open-Source Software Use Joins The Mix”,
published in November 2004, found that OSS/FS “is believed to create more
opportunities for innovation than commercial or proprietary software.” Nearly 60% of
the companies with annual revenue of $100 million or more stated that OSS/FS
creates more opportunities for innovation. Small businesses (less than $100 million),
where much innovation takes place, agreed even more strongly; “almost three-
quarters report open-source software readily promotes more opportunities for IT
innovation.” This is consistent with previous surveys of expectations. The February
2001 research paper Distributed Knowledge and the Global Organization of Software
Development by Anca Metiu and Bruce Kogut (The Wharton School, University of
Pennsylvania) reports on field observations of companies in four countries. They state
that, “the open development model opens up the ability to contribute to innovation on
a global basis. It recognizes that the distribution of natural intelligence does not
correspond to the monopolization of innovation by the richest firms or richest
countries. It is this gap between the distribution of ability and the distribution of
opportunity that the web will force companies to recognize, and to realign their
development strategies. For the young engineer in India, China, or Israel - who cannot
or does not want to come to the Silicon Valley, or the Research Triangle, or Munich -
is increasingly able to contribute to world innovation.” In 2000, a Forrester Research
study interviewed 2,500 IT managers and found that 84% of them forecast that open
source software would be the spark behind major innovations throughout the industry

It’s not just business people and observers of them; software developers themselves
report that OSS/FS projects are often innovative. According to the BCG study of
OSS/FS developers, 61.7% of surveyed developers stated that their OSS/FS project
was either their most creative effort or was equally as creative as their most creative
experience. Eric S. Raymond’s widely-read essay The Cathedral and the Bazaar
describes one case of this happening in his project, fetchmail. He had been
developing a product to do one job, when a user proposed an approach that changed
the entire nature of his project. In Raymond’s words, “I realized almost immediately
that a reliable implementation of this feature would make [a significant portion of the
project] obsolete.” He found that “Often, the most striking and innovative solutions
come from realizing that your concept of the problem was wrong” and that “the next
best thing to having good ideas is recognizing good ideas from your users. Sometimes
the latter is better.” Clearly, OSS/FS enables interaction between developers and
users that can encourage innovation.

This is not a new phenomenon; many key software-related innovations have been
OSS/FS projects. For example, Tim Berners-Lee, inventor of the World Wide Web,
stated in December 2001 that “A very significant factor [in widening the Web’s use
beyond scientific research] was that the software was all (what we now call) open
source. It spread fast, and could be improved fast - and it could be installed within
government and large industry without having to go through a procurement process.”
The Internet’s critical protocols, such as TCP/IP, have been developed and matured
through the use of OSS/FS. The Firefox web browser has some very interesting
innovations, such as live bookbooks (making RSS feeds look just like bookmark
folders, and enabling simple subscription), as well as incorporating innovations from
other browsers such as tabbed browsing and pop-up blocking. Indeed, many people
are working hard to create new innovations for the next version of Firefox.

Leading innovation expert Professor Eric von Hippel is the head of the management
of innovation and entrepreneurship group at the Massachusetts Institute of
Technology (MIT) Sloan School of Management. He has studied in detail how
innovation works, including how it works in the development of OSS/FS programs.

His studies suggest that OSS/FS can significantly enable innovation. In the interview
Something for nothing of von Hippel and Karim Lakhani, they report that “Apache
and other open-source programs are examples of user-to-user innovation systems.”
von Hippel explained that “Users may or may not be direct customers of the
manufacturer. They may be in different industries or segments of the marketplace, but
they are out in the field trying to do something, grappling with real-world needs and
concerns. Lead users are an innovative subset of the user community displaying two
characteristics with respect to a product, process or service. They face general needs
in a marketplace but face them months or years before the rest of the marketplace
encounters them. Since existing companies can’t customize solutions good enough
for them, lead users go out there, patch things together and develop their own
solutions. They expect to benefit significantly by obtaining solutions to their needs.
When those needs are evolving rapidly, as is the case in many high-technology
product categories, only users at the front of the trend will have experience today with
tomorrow’s needs and solutions. Companies interested in developing functionally
novel breakthroughs... will want to find out how to track lead users down and learn
from what they have developed...” He closes noting that, “We believe Apache and
open source are terrific examples of the lead user innovation process that can take
teams and companies in directions they wouldn’t have otherwise imagined.” von
Hippel has elsewhere noted that in certain industries approximately 80% of new
developments are customer based; vendors ignore customers at their peril. For more
information on this work relating to OSS/FS, innovation, and user interaction, see Nik
Franke and Eric von Hippel’s Satisfying Heterogeneous User Needs via Innovation
Toolkits: The Case of Apache Security Software, Karim Lakhani and Eric von
Hippel’s How Open Source Software Works: Free User to User Assistance, Eric von
Hippel’s Horizontal innovation networks- by and for users, Eric von Hippel and
Georg von Krogh’s Exploring the Open Source Software Phenomenon: Issues for
Organization Science (which proposes that OSS/FS development is a compound
innovation model, containing elements of both private investment and collective
action), and Eric von Hippel’s Open Source Shows the Way - Innovation By and For
Users - No Manufacturer Required.

Other academics who study innovation have come to similar conclusions. Joachim
Henkel (at Germany’s University of Munich, Institute for Innovation Research) wrote
the paper ”The Jukebox Mode of Innovation - a Model of Commercial Open Source
Development”. In it, he creates a model of innovation in software, and finds that “free
revealing of innovations is a profit-maximizing strategy... a regime with compulsory
revealing [e.g., copylefting licenses] can lead to higher product qualities and higher
profits than a proprietary regime”. Tzu-Ying Chan and Jen-Fang Lee (at Taiwan’s
National Cheng Chi Univerity of Technology & Innovation Management) wrote ”A
Comparative Study of Online User Communities Involvement In Product Innovation
and Development”, which identified a number of different types of online user
communities. They discussed in particular the “user product collaboration innovation
community”, noting that firms must play a supporting/complementary role for
effective inteactions with this community, a role very different from its interactions
with many other kinds of communities.

Yuwei Lin’s PhD thesis (at the UK’s University of York, Science and Technologies
Studies Unit, Department of Sociology), Hacking Practices and Software
Development: A Social Worlds Analysis of ICT Innovation and the Role of
Free/Libre Open Source Software examines the social world of OSS/FS developers
and its implications. Its major findings are (I quote but use American spelling):

1. As a community of open source practices, the FLOSS social world allows
diverse actors to engage in the innovation process and therefore contains
more innovation resources than other relatively conventional software
models.

2. The strategic collaboration between the public (i.e., the free software
community) and the private (i.e., infomration technologies corporations)
sectors symbolizes a pattern of hybrid innovation that entails complex
communications and networks.

3. Tacit knowledge anchored in everyday experiences is peculiarly valued in a
community-based innovation system where social networking and
information sharing are undergoing vigorously.

4. The development of FLOSS democratizes [the] software innovation process
and allows lay people to develop their understanding and knowledge of a
shared problem/issue, especially through the web, to challenge established
views on the issue.

On September 14, 2004, The Economist (a highly respected magazine) awarded Linus
Torvalds an award for innovation, specifically as someone driving the most
financially successful breakthrough in computing, for his work on the Linux kernel.
His citation declares that this OSS/FS project “created a huge following, eventually
attracting big industry players such as Oracle, IBM, Intel, Netscape and others. It also
spawned several new software companies, including Red Hat, SUSE LINUX and
Turbolinux. Today, there are hundreds of millions of copies of Linux running on
servers, desktop computers, network equipment and in embedded devices
worldwide.”

This history of innovation shouldn’t be surprising; OSS/FS approaches are based on
the scientific method, allowing anyone to make improvements or add innovative
techniques and then make them immediately available to the public. Eric Raymond
has made a strong case for why innovation is more likely, not less likely, in OSS/FS
projects.

In public, Microsoft has long asserted that OSS/FS cannot innovate, or at least cannot
innovate as well as Microsoft can. At first, the argument seems reasonable: why
would anyone innovate if they (or at least their company) couldn’t exclusively receive
all the financial benefits? But while the argument seems logical, it turns out to be
untrue. In February 2003, Microsoft’s Bill Gates admitted that many developers are
building innovative capabilities using OSS/FS systems. Microsoft’s own secret
research (later leaked as “Halloween I”) found that “Research/teaching projects on
top of Linux are easily ‘disseminated’ due to the wide availability of Linux source. In
particular, this often means that new research ideas are first implemented and
available on Linux before they are available / incorporated into other platforms.” In
contrast, when examining the most important software innovations, it’s quickly
discovered that Microsoft invented no key innovations, nor was Microsoft the first
implementor of any of them. In fact, there is significant evidence that Microsoft is not
an innovator at all. Thus the arguments, while sounding logical, ignore how
innovation really occurs and what researchers say are necessary. Innovation requires
that researchers be able publish and discuss their work, and that leading-edge users be
able to modify and integrate components in novel ways; OSS/FS supports these
requirements for innovation very well.

If proprietary approaches were better for research, then you would expect that to be
documented in the research community. However, the opposite is true; the paper “NT
Religious Wars: Why Are DARPA Researchers Afraid of Windows NT?” found that,

in spite of strong pressure by paying customers, computer science researchers
strongly resisted basing research on Microsoft Windows. Reasons given were:
developers believe Windows is terrible, Windows really is terrible, Microsoft’s highly
restrictive non-disclosure agreements are at odds with researcher agendas, and there is
no clear technology transition path for OS and network research products built on
Windows. This last problem is especially interesting: you’d think that if you could
improve a popular product, the improvement would get to users more quickly. But
innovation doesn’t work this way usually; most research creates prototypes that aren’t
products by themselves, and requires signficant interaction between many people
before the idea comes to fruition. In proprietary products, usually only the vendor can
distribute changes, and publishing the detailed source code explaining the work is
prohibited, stifling research. In contrast, NSA’s Security-Enhanced Linux (SELinux)
project could simply take GNU/Linux code, modify it however they liked to try out
new concepts, and publish all the results for anyone to productize. In contrast, if an
innovation requires the cooperation of a proprietary vendor, it may not happen at all.
HP developed new technology for choking off the spread of viruses, but although HP
got it to work well in its labs using systems like Linux, they couldn’t duplicate the
capability on Windows systems because “we [HP] don’t own Windows.” Stanford
Law School professor Lawrence Lessig (the “special master” in Microsoft’s antitrust
trial) noted that “Microsoft was using its power to protect itself against new
innovation” and that Microsoft’s practices generally threaten technical innovation -
not promote it.

The claim that OSS/FS quashes innovation is demonstrably false. There are reports
from IT managers that OSS/FS encourages innovation, reports from developers that
OSS/FS encourages innovation, and a demonstrated history of innovation by OSS/FS
(such as in the development of the Internet and World Wide Web). In contrast,
Microsoft’s failure to demonstrate major innovations itself, there is dissatisfaction by
researchers and others about Microsoft’s proprietary approaches, and Microsoft’s
own research found that new research ideas are often first implemented and available
on OSS/FS.

This doesn’t mean that having or using OSS/FS automatically provides innovation,
and certainly proprietary developers can innovate as well. And remember that
innovation is not as important as utility; new is not always better! But clearly OSS/FS
does not impede innovation; the evidence suggests that in many situations OSS/FS is
innovative, and some evidence suggests that OSS/FS may actively aid innovation.

While I cannot quantitatively measure these issues well, these issues are actually the most
important issues to many.

9. Unnecessary Fears
Some avoid OSS/FS, not due to the issues noted earlier, but due to unnecessary fears of
OSS/FS. Let’s counter some of them:

1. Is proprietary software fundamentally better supported than OSS/FS? No. There
are actually two kinds of support for OSS/FS: traditional paid-for support and
informal community support. There are many organizations who provide traditional
support for a fee; since these can be competed (an option not available for proprietary
software), you can often get an excellent price for support. Again, an anti-trust lawyer
would say that OSS/FS support is “contestable.” For example, many GNU/Linux
distributions include installation support when you purchase their distribution, and for

a fee they’ll provide additional levels of support. There are many independent
organizations that provide traditional support for a fee as well. The article
‘Team’work Pays Off for Linux evaluated four different technical support services
for GNU/Linux systems, and found that “responsiveness was not a problem with any
of the participants” and that “No vendor failed to solve the problems we threw at it.”
It’s very important to understand that OSS/FS support can be competed separately
from the software product; in proprietary products, support is essentially tied to
purchase of a usage license.

For example, the Gartner Group reports that “By 2005, warranties and additional
maintenance for at least the 100 most-popular open-source software products will be
offered by commercial software vendors, service providers, or insurance companies
(0.7 probability). In the meantime, users can minimize any ‘fitness for purpose’ risks
through evaluation and testing, and by only using production releases of well-known,
mature products from reputable distributors.” Indeed, this prediction seems nearly
certain, since it’s been happening and accelerating for years.

As an alternative, you can also get unpaid support from the general community of
users and developers through newsgroups, mailing lists, web sites, and other
electronic forums. While this kind of support is non-traditional, many have been very
satisfied with it. Indeed, in 1997 InfoWorld awarded the “Best Technical Support”
award to the “Linux User Community,” beating all proprietary software vendors’
technical support. Many believe this is a side-effect of the Internet’s pervasiveness -
increasingly users and developers are directly communicating with each other and
finding such approaches to be more effective than the alternatives (for more on this
business philosophy, see The Cluetrain Manifesto). Using this non-traditional
approach effectively for support requires following certain rules; for information on
these rules, consult “How to ask smart questions” and How to Report Bugs
Effectively. But note that there’s a choice; using OSS/FS does not require you to use
non-traditional support (and follow its rules), so those who want guaranteed
traditional support can pay for it just as they would for proprietary software.

2. Does proprietary software give users more legal rights than OSS/FS? No. Some
have commented that “with OSS/FS you give up your right to sue if things go
wrong.” The obvious retort is that essentially all proprietary software licenses also
forbid lawsuits - so this isn’t different at all! Anyone who thinks that they can sue
Microsoft or other shrink-wrap proprietary vendors when things go wrong is simply
fooling themselves. In any case, most users aren’t interested in suing vendors - they
want working systems. See “A Senior Microsoft Attorney Looks at Open-Source
Licensing”, where Bryan Pfaffenberger argues that “With open-source software... you
are, in principle, walking into the deal with your eyes wide open. You know what
you’re getting, and if you don’t, you can find someone who does. Open-source
licenses enable the community of users to inspect the code for flaws and to trade
knowledge about such flaws, which they most assuredly do. Such licenses allow users
to create derivative versions of the code that repair potentially hazardous problems
the author couldn’t foresee. They let users determine whether the program contains
adequate safeguards against safety or security risks. In contrast, the wealthy software
firms pushing UCITA are asking us to buy closed-source code that may well contain
flaws, and even outright hazards attributable to corporate negligence - but they won’t
let us see the code, let alone modify it. You don’t know what you’re getting.” Finally,
if the software goes wrong and it’s very important, you can fix it yourself or pay to
have it fixed; this option greatly reduces risk, and this option doesn’t exist for
proprietary software.

There is a another legal difference that’s not often mentioned. Many proprietary
programs require that users permit software license audits and pay huge fees if the
organization can’t prove that every use is licensed. So in some cases, if you use
proprietary software, the biggest legal difference is that the vendors get to sue you.

3. Aren’t OSS/FS programs simply plagerized proprietary programs? No. A
programmer who has access to the source code of one program could illegally take
that code and submit it to another related program. There are good reasons to believe
this has happened many times in proprietary programs; since few people can view the
source code of two different proprietary programs, some programmers may do it in
the (plausible) belief that they won’t be caught. However, it’s unlikely that a
programmer would copy code from a proprietary program to an OSS/FS program
without permission, because (1) the worldwide visibility of most OSS/FS source code
would make it easy for a proprietary vendor to detect the violation, and (2) the clear
record of exactly who submitted the plagerized code would make it easy to prosecute
that lawbreaking programmer.

A proprietary company could conceivably conspire to insert such code to try to
discredit their OSS/FS competitor. But the risk of tracing such an attack back to the
conspirator is very great; the developer who does it is likely to talk and/or other
evidence may provide a trace back to the conspirators. Alternatively, a proprietary
company can claim that such an event has happened, without doing it, and then use
the false claim to spread fear, uncertainty, and doubt. But in that case, eventually the
case will fall apart due to lack of evidence.

A few years ago The SCO Group, Inc., began claiming that the Linux kernel
contained millions of lines of its copyrighted code, and sued several companies
including IBM. SCO has vocally supported several lawsuits, funded at least in part by
Microsoft (via Baystar and a license purchase with no evidence that it will be used).
Yet after repeatedly being ordered by a court to produce its evidence, SCO has yet to
produce any evidence that code owned by SCO has been copied into the Linux
kernel. Indeed, it’s not even clear that SCO owns the code it claims to own (it’s in
dispute with Novell on this point). In addition, Open Source Risk Management
(OSRM) did a detailed code analysis, and certified in April 2004 that the Linux
kernel is free of copyright infringement. SCO claims that its contracts with IBM give
it ownership over IBM-developed code, but previous documents relating to this
contract inherited by SCO (such as newletter explanations from AT&T and a previous
court case involving BSD) give extremely strong evidence that this is not true. More
information on the SCO vs. IBM case can be found at Groklaw.net.

In 2004 Ken Brown, President of Microsoft-funded ADTI, claimed that Linus
Torvalds didn’t write Linux, and in particular claimed that Torvalds stole much of his
code from Minix. Yet it turns out that ADTI had previously hired Alexey Toptygin to
find copying between Minix and Linux using automated tools, and Toptygin found
that no code was copied from Minux to Linux or from Linux to Minux. Andrew
Tanenbaum, the author of Minix, strongly refuted Brown’s unsubstantiated claims in
a statement, follow-up, and rebuttal. For example, Tanenbaum stated that “[Linus
Torvalds] wrote Linux himself and deserves the credit.” Tanenbaum also discredited
Brown’s claim that no one person could write a basic kernel; Tanenbaum noted that
there are “six people I know of who (re)wrote UNIX [and] all did it independently.”
Other reports find many reasons to believe that ADTI’s claims are false; for example,
the Associated Press noted that Recent attacks on Linux come from dubious source.

There are a vast number of OSS/FS programs, almost none of which are involved in
any dispute. No reasonable evidence has surfaced to justify the most publicized
claims (of SCO and ADTI); these claims can be easily explained as attempts by a
vendor to stall a competitor through the courts (see the terms barratry and vexatious
litigation) and unfounded claims. There may be some cases, but given the widespread
visibility of OSS/FS source code, and the lack of plausible cases, they must be
extremely rare. Thus, there is strong evidence that people really are (legally)
developing OSS/FS programs, and not simply copying program source code illegally
from proprietary programs.

4. Does OSS/FS expose you to greater risk of abandonment? No. Businesses go out
of business, and individuals lose interest in products, in both the proprietary and
OSS/FS world. A major difference, however, is that all OSS/FS programs are
automatically in escrow - that is, if their original developer stops supporting the
product, any person or group can step forward to support it instead. This has been
repeatedly demonstrated in OSS/FS. For example, the GIMP is a bitmapped graphical
editor that was abandoned by its original developers (what’s worse, they abandoned it
before its initial release and failed to arrange for anyone else to succeed them).
Nevertheless, even in this worst-case situation, after a period of time other users came
forward and continued its development. As another example, NCSA abandoned its
web server “httpd”, so some of its users banded together to maintain it - its results
became Apache, the world’s most popular web server.

5. Are OSS/FS licenses enforceable? In particular, is the GPL enforceable? Almost
all OSS/FS programs are released under some sort of license, and the most popular
license is the GPL. A few competitors have claimed, in the past, that these licenses --
in particular the GPL -- are unenforceable. But legal scholars and lawyers who look
into the issue generally scoff at such arguments. Eben Moglen’s article Enforcing the
GNU GPL describes why the GPL is so easy to enforce -- and why he’s been able to
enforce the GPL dozens of times without even going to court. At the time, he stated
that “We do not find ourselves taking the GPL to court because no one has yet been
willing to risk contesting it with us there.”

In 2004, the GPL was tested in court and found valid. On 14 April 2004, a three-
judge panel in German Munich court granted a preliminary injunction to stop
distribution of a Sitecom product that was derived from the GPL, yet failed to comply
with the GPL. (see also the French article La licence GPL sur un logiciel libre n’est
pas une demi-licence!). Soon afterwords, Sitecom Chief Executive Pim
Schoenenberger said the company made changes to comply with the GPL. The
preliminary injunction was later confirmed on July 23, 2004, along with a significant
judgement. John Ferrell of law firm Carr & Ferrell declared that this German decision
lends weight to the GPL, and that it “reinforces the essential obligations of the GPL
by requiring that if you adopt and distribute GPL code, you must include the GPL
license terms and provide source code to users,” just as its license requires.

The license requirements for common OSS/FS licenses are actually easy to comply
with, but there is significant evidence that those terms are enforceable. Which is good
news for OSS/FS users; clear, simple, and consistent requirements make it easy to
understand what to do. For developers who depend on licenses like the GPL to keep
the code available for improvement, this is also good news.

6. Will unintentionally including GPL code in proprietary code force the rest of the
product to be GPL’ed? No, though you can choose to do so. The GPL, like most
licenses for proprietary software libraries, grants you the right to use code only under
certain conditions. Many proprietary libraries require that you pay a fee for each

copy, or a large fee for unlimited use. The GPL requires no fee, but it does require
that if you include the GPL code as part of your code, you need to release the rest of
the code under the GPL to obey the license.

So what happens if you are developing a proprietary product, and one of your
developers includes GPL code directly into the product without your knowledge?
Once that happens, you have three (not one) options: (1) release the rest under the
GPL, (2) remove the GPL’ed code, or (3) arrange for the GPL’ed code to be released
to you under a compatible license (this typically involves a fee, and some projects
will not be willing to do this). This is not a good situation to be in; make sure that
your developers know that they must not steal code, but must instead ensure that the
licenses of any software they include in your program (either open source software or
proprietary software) is compatible with your licenses.

There are many ways of proprietary and GPL programs can work together, but it must
be carefully done to obey the licenses. The Linux kernel is GPL’ed, but proprietary
applications can run on top of it without any limitations at all. The gcc compiler is
GPL’ed, but proprietary applications can be compiled using it.

Indeed, there are a large number of misconceptions about the GPL, more than can be
covered here. For more information about the GPL, a useful source is the Frequently
Asked Questions about the GNU GPL from the Free Software Foundation (the
authors of the GPL).

7. Is OSS/FS economically viable? Yes. There are companies that are making money
on OSS/FS, or using OSS/FS to support their money-making activities. Many papers
have been written about how to make money using OSS/FS, such as Eric S.
Raymond’s “The Magic Cauldron” and Donald K. Rosenberg’s “How to make money
with open-source software.” An IT Manager’s Journal article from May 2004
describes seven business strategies using open source software. OSS/FS isn’t
compatible with some business models, but OSS/FS is certainly compatible with or
supports other models. Capitalism does not guarantee that businesses can remain
unchanged in changing environments.

For example, HP reported in January 2003 that it had annual sales of $2 billion linked
to GNU/Linux. IBM reported in 2002 that they had already made almost all of their
$1 billion investment in Linux back in only one year - i.e., as profit. James Boyle’s
response “Give me liberty and give me death?” makes the extraordinary observation
that “IBM now earns more from what it calls ‘Linux-related revenues’ than it does
from traditional patent licensing, and IBM is the largest patent holder in the world.”

The Financial Times Story “Could Linux dethrone the software king?” from January
21, 2003 analyzes some of the financial issues of OSS/FS.

Joel Spolsky’s “Strategy Letter V” notes that “most of the companies spending big
money to develop open source software are doing it because it’s a good business
strategy for them.” His argument is based on microeconomics, in particular, that
every product in the marketplace has substitutes and complements. A substitute is
another product you might buy if the first product is too costly, while a complement is
a product that you usually buy together with another product. Since demand for a
product increases when the prices of its complements decrease, smart companies try
to commoditize their products’ complements. For example, an automobile
manufacturer may invest to reduce the cost of gas refinement - because if gas is
cheaper, they’ll sell more cars. For many companies, such as computer hardware

makers and service organizations, supporting an OSS/FS product turns a
complementary product into a commodity - resulting in more sales (and money) for
them.

Although many OSS/FS projects originally started with an individual working in their
spare time, and there are many OSS/FS projects which can still be described that way,
the “major” widely-used projects tend to no longer work that way. Instead, most
major OSS/FS projects have large corporate backing with significant funds applied to
them. This shift has been noted for years, and is discussed in papers such as Brian
Elliott Finley’s paper Corporate Open Source Collaboration?.

Also, looking only at companies making money from OSS/FS misses critical issues,
because that analysis looks only at the supply side and not the demand side.
Consumers are saving lots of money and gaining many other benefits by using
OSS/FS, so there is a strong economic basis for its success. Anyone who is saving
money will fight to keep the savings, and it’s often cheaper for consumers to work
together to pay for small improvements in an OSS/FS product than to keep paying
and re-paying for a proprietary product. A proprietary vendor may have trouble
competing with a similar OSS/FS product, because the OSS/FS product is probably
much cheaper and frees the user from control by the vendor. For many, money is still
involved - but it’s money saved, not money directly acquired as profit. Some OSS/FS
vendors have done poorly financially - but many proprietary vendors have also done
poorly too. Luckily for consumers, OSS/FS products are not tied to a particular
vendor’s financial situation as much as proprietary products are.

Fundamentally, software is economically different than physical goods; it is infinitely
replicable, it costs essentially nothing to reproduce, and it can be developed by
thousands of programmers working together with little investment (driving the per-
person development costs down to very small amounts). It is also durable (in theory,
it can be used forever) and nonrival (users can use the same software without
interfering with each other, a situation not true of physical property). Thus, the
marginal cost of deploying a copy of a software package quickly approaches zero.
This explains how Microsoft got so rich so quickly (by selling a product that costs
nearly nothing to replicate), and why many OSS/FS developers can afford to give
software away. See “Open Source-onomics: Examining some pseudo-economic
arguments about Open Source” by Ganesh Prasad, which counters “several myths
about the economics of Open Source.” People are already experimenting with
applying OSS/FS concepts to other intellectual works, and it isn’t known how well
OSS/FS concepts will apply to other fields. However, it is clear that making
economic decisions based on analogies between software and physical objects is not
sensible, because software has many economic characteristics that are different from
physical objects.

8. Will OSS/FS destroy the software industry? Won’t programmers starve if many
programs become OSS/FS? No. It’s certainly possible that many OSS/FS products
will eliminate their proprietary competition, but that’s the nature of competition. If
OSS/FS approaches pose a significant threat to proprietary development approaches,
then proprietary vendors must either find ways to compete or join the OSS/FS
movement. No one mourns the loss of buggy whip manufacturers, who were driven
out of business by a superior approach to transportation (cars). Heinlein noted that no
one is guaranteed protection against change in Life-Line (1939): “There has grown up
in the minds of certain groups in this country the notion that because a man or a
corporation has made a profit out of the public for a number of years, the government
and the courts are charged with the duty of guaranteeing such profit in the future,

even in the face of changing circumstances and contrary public interest. This strange
doctrine is not supported by statute nor common law. Neither individuals nor
corporations have any right to come into court and ask that the clock of history be
stopped, or turned back, for their private benefit. “

Eric Raymond’s “The Magic Cauldron” describes many ways to make money with
OSS/FS. One particularly interesting note is that there is evidence that 95% of all
software is not developed for sale. For the vast majority of software, organizations
must pay developers to create it anyway. Thus, even if OSS/FS eliminated all shrink-
wrapped programs, it would only eliminate 5% of the existing software development
jobs. And, since the OSS/FS programs would be less expensive, other tasks could
employ developers that are currently too expensive, so widespread OSS/FS
development would not harm the ability of developers to make a living.

OSS/FS doesn’t require that software developers work for free; many OSS/FS
products are developed or improved by employees (whose job is to do so) and/or by
contract work (who contract to make specific improvements in OSS/FS products). If
an organization must have a new capability added to an OSS/FS program, they must
find someone to add it... and generally, that will mean paying a developer to develop
the addition. The difference is that, in this model, the cost is paid for development of
those specific changes to the software, and not for making copies of the software.
Since copying bits is essentially a zero-cost operation today, this means that this
model of payment more accurately reflects the actual costs (since in software almost
all costs are in development, not in copying).

Indeed, there has been a recent shift in OSS/FS away from volunteer programmers
and towards paid development by experienced developers. Again, see Ganesh
Prasad’s article for more information. Brian Elliott Finley’s article “Corporate Open
Source Collaboration?” stated that “Now corporate America is getting involved in the
development process. This seems to be a common trend amongst individuals, and
now corporations, as they move into the Open Source world. That is that they start
out as a user, but when their needs outstrip existing software, they migrate from being
mere users to being developers. This is a good thing, but it makes for a slightly
different slant on some of the dynamics of the process.” AOL decided to spin off the
Mozilla project as a separate organization; not only does the separate organization
employ several full-time employees, but other organizations have worked to hire
Mozilla workers. Fundamentally, paying sotware developers is similar to paying for
proprietary licenses, except you only have to pay for improvements (instead of paying
for each copy), so many organizations appear to have found that it’s worthwhile. The
Boston Consulting Group/OSDN Hacker Survey (January 31, 2002) surveyed users
of SourceForge and found that 33.8% of the OSS/FS developers were writing OSS
code for “work functionality” (i.e., it was something they did as part of their
employment). It also provided quantitative evidence that OSS/FS developers are
experienced; it found that OSS/FS developers had an average age of 30 and that they
averaged 11 years of programming experience.

In 2004, Government Computer News reported in July 2004 on a presentation by
Andrew Morton, who leads maintenance of the the Linux kernel in its stable form,
and confirmed the trend towards paid OSS/FS developers. Morton spoke at a meeting
sponsored by the Forum on Technology and Innovation, to address technology-
related issues, held by Sen. John Ensign (R-Nev.), Sen. Ron Wyden (D- Ore.) and the
Council on Competitiveness. Morton noted that “People’s stereotype [of the typical
Linux developer] is of a male computer geek working in his basement writing code in
his spare time, purely for the love of his craft. Such people were a significant force up

until about five years ago ...” but contributions from such enthusiasts, “is waning...
Instead, most Linux kernel code is now generated by corporate programmers.”
Morton noted that “About 1,000 developers contribute changes to Linux on a regular
basis... Of those 1,000 developers, about 100 are paid to work on Linux by their
employers. And those 100 have contributed about 37,000 of the last 38,000 changes
made to the operating system.” The article later notes “Even though anyone can
submit changes, rarely does good code come from just anyone. Morton noted that it is
rare that a significant change would be submitted from someone who is completely
unknown to the core developers. And all submitted code is inspected by other
members of the group, so it is unlikely some malicious function may be secretly
embedded in Linux... Far from being a project with a vast numbers of contributors,
about half of those 37,000 changes are made by core developer team of about 20
individuals, Morton said.” The September 3, 2004 article Peace, love and paychecks
gives one of many examples of this trend. Network Appliance (NetApp) pays
significant money to one of the Linux lieutenants (Myklebust), as well as developing
code for Linux, for a very simple reason: money. “What’s in it for [NetApp] is sales;
it can sell into the Linux market. This is not about philanthropy. There is plenty of
mutual benefit going on here,” says Peter Honeyman. The article notes that “Big
companies pick up the tab for Linux development because the system helps them sell
hardware and consulting services. HP claims $2.5 billion in Linux-related revenue in
2003, while IBM claims $2 billion. Red Hat, which distributes a version of the Linux
operating system, generated $125 million in revenues last fiscal year and carries a
market value of $2.3 billion. Last year sales of Linux servers grew 48% to $3.3
billion, and by 2008 Linux server sales could approach $10 billion, according to
market researcher IDC.” NetApp earned $152 million on sales of $1.2 billion, its
Linux payoff is significant. Linux now contains bits of code written by NetApp’s
programmers, so that NetApp works particularly well with Linux. As a result, “it has
won business it wouldn’t have otherwise at Oracle, Pixar, Southwest Airlines,
ConocoPhillips and Weta Digital, the effects studio behind Lord of the Rings.”

Corporate support of OSS/FS projects is not a new phenomenon. The X window
system began in 1984 as a cooperative effort between MIT and Digital Equipment
Corporation (DEC), and by 1988 a non-profit vendor consortium had been established
to support it. The Apache web server began in 1995, based on previous NCSA work)
were developed by consortias of companies from their very beginnings, and other
popular OSS/FS projects like MySQL, Zope, and Qt have had strong backing from a
specific commercial company for years. But now there is more corporate acceptance
in using OSS/FS processes to gain results, and more understanding of how to do so.
And as more OSS/FS projects gain in maturity, it is more likely that some project will
intersect with a given company’s needs.

It seems unlikely that so many developers would choose to support an approach that
would destroy their own industry, and there are a large number of OSS/FS
developers. On January 28, 2003, Sourceforge.net all by itself reported that it had
555,314 registered users on its OSS/FS development site, and many of the largest
OSS/FS projects are not hosted by Sourceforge.net (including the Linux kernel, the
gcc compilation system, the X-Windows GUI system, the Apache web server, the
Mozilla web browser, and the Open Office document management suite).
Unfortunately, there seems to be no data to determine the number of OSS/FS
developers worldwide, but it is likely to be at least a million people and possibly
many, many more.

OSS/FS enables inexperienced developers to gain experience and credibility, while
enabling organizations to find the developers they need (and will then pay to develop

more software). Often organizations will find the developers they need by looking at
the OSS/FS projects they depend on (or on related projects). Thus, lead developers of
an OSS/FS project are more likely to be hired by organizations when those
organizations need an extension or support for that project’s program. This gives both
hope and incentive to inexperienced developers; if they start a new project, or visibly
contribute to a project, they’re more likely to be hired to do additional work. Other
developers can more easily evaluate that developer’s work (since the code is available
for all to see), and the inexperienced developer gains experience by interacting with
other developers. This isn’t just speculation; one of Netscape’s presenters at
FOSDEM 2002 was originally a volunteer contributor to Netscape’s Mozilla project;
his contributions led Netscape to offer him a job (which he accepted).

Of course, OSS/FS certainly has an impact on the software industry, but in many
ways it appears quite positive, especially for customers. Since customers are the ones
directly funding the specific improvements they actually want (using money and/or
developer time), market forces push OSS/FS developers directly towards making the
improvements users actually want. Proprietary vendors try to identify customer needs
using marketing departments, but there’s little evidence that marketing departments
are as effective as customers themselves at identifying customer needs. In OSS/FS
development, customers demonstrate which capabilities are most important to them,
directly, by determining what they’ll fund. Another contrast is that proprietary
developers’ funding motivations are not always aligned with customers’ motivations.
Proprietary development has strong financial incentives to prevent the use of
competing products, to prevent interoperation with competing products, and to
prevent access to copies (unless specifically authorized by the vendor). Thus, once a
proprietary product becomes widely used, its vendor sometimees devotes increasing
efforts to prevent use, interoperation, and copying, instead of improving capabilities
actually desired by customers and even if those mechanisms interfere with customer
needs. This trend is obvious over the decades of the software industry; dongles,
undocumented and constantly changing data protocols and data formats, copy-
protected media, and software registration mechanisms which interfere with customer
needs are all symptoms of this difference in motivation. Note that an OSS/FS
developer loses nothing if their customer later switches to a competing product
(whether OSS/FS or proprietary), so an OSS/FS developer has no incentive to insert
such mechanisms.

Karen Shaeffer has written an interesting piece, Prospering in the Open Source
Software Era, which discusses what she views to be the effects of OSS/FS. For
example, OSS/fS has the disruptive effect of commoditizing what used to be
proprietary property and it invites innovation (as compared to proprietary software
which constrained creativity). She thinks the big winners will be end users and the
software developers, because “the value of software no longer resides in the code
base - it resides in the developers who can quickly adapt and extend the existing open
source code to enable businesses to realize their objectives concerned with emerging
opportunities. This commoditization of source code represents a quantum step
forward in business process efficiency - bringing the developers with the expertise
into the business groups who have the innovating ideas.”

9. Is OSS/FS compatible with Capitalism? Yes. Years ago some tried to label OSS/FS
as “communistic” or “socialistic” (i.e., anti-capitalist), but that rhetoric has failed.
One article explaining why OSS/FS and capitalism are compatible is Ganesh Prasad’s
How Does the Capitalist View Open Source?. This paper shows that OSS/FS is quite
consistent with capitalism: it increases wealth without violating principles of property
ownership or free will. The developer of the Linux kernel, Linus Torvalds, noted that

U.S. copyright law specifically notes the exchange of copyrighted material as
financial gain. US Code, Title 17 (copyrights), Chapter 1, Section 101: “Definitions”
says that, “The term ‘financial gain’ includes receipt, or expectation of receipt, of
anything of value, including the receipt of other copyrighted works.” He notes that
this is part of the very fundamentals of copyright law. What’s more, he notes that the
GPL license (the most popular OSS/FS license) “is designed so that people receive
the value of other people’s copyrighted works in return [for] their own contributions.
That is the fundamental idea of the whole license - everything else is just legal fluff...
the notion that the GPL has, of ‘exchange of receipt of copyrighted works,’ is actually
explicitly encoded in U.S. copyright law. It’s not just a crazy idea that some lefty
Commie hippie dreamed up...” See also the previous information on economic
viability and starving programmers for more.

10. If only OSS/FS programs exist in a software category, will that completely
eliminate competition? No. Oddly enough, OSS/FS programs sometimes compete
with each other in a given functional area. The text editors emacs (primarily GNU
emacs) and vi (primarily vim) have dueled for decades. Sendmail is still a popular
program for delivering email, but it has competition from other OSS/FS programs
such as Postfix and Exim. The desktop environments GNOME and KDE compete
with each other, as do the OS kernels of Linux and the BSDs. Generally, competing
OSS/FS projects must distinguish themselves from each other to succeed (e.g.,
through user interface philosophies, design approaches, characteristics like security,
licensing strategies, and so on), but of course that’s true for competing proprietary
programs too. Also, competing OSS/FS programs generally try to stay compatible
with each other (because their customers demand it) and sometimes even help each
other with technical problems. For example, freedesktop.org provides a forum to
encourage cooperation among open source desktops for the X Window System (such
as KDE and GNOME), and is part of the Free Standards Group which tries to
accelerate the use and acceptance of open source technologies through the
development, application and promotion of standards. In addition, even if there is one
product, multiple organizations can compete for maintenance and support (e.g.,
GNU/Linux distributors do this). Thus, even if OSS/FS eliminates all proprietary
programs in a given category, that would still not eliminate competition.

11. Is OSS/FS a “destroyer of intellectual property”? No. It’s true that Microsoft’s Jim
Allchin has claimed that OSS is an intellectual-property destroyer and that it’s
somehow “un-American”. But you can use OSS/FS products (e.g., a word processor)
to develop private and proprietary information, and you can keep the information as
confidential and proprietary as you want. What you can’t do is use someone else’s
material in a way forbidden by law... and this is true for all software, not just OSS/FS.

One interesting case is the “General Public License” (GPL), the most common
OSS/FS license. Software covered by the GPL can be modified, and the modified
code can be used in house without obligations. If you release that modified software,
you must include an offer for the source code under the same GPL license. Basically,
the GPL creates a consortium; anyone can use and modify the program, but anyone
who releases the program (modified or not) must satisfy the restrictions in the GPL
that prevent the program and its derivatives from becoming proprietary. Since the
GPL is a legal document, it can be hard for some to understand. Here is one less legal
summary (posted on Slashdot):

This software contains the intellectual property of several people. Intellectual
property is a valuable resource, and you cannot expect to be able to use someone
else’s intellectual property in your own work for free. Many businesses and
individuals are willing to trade their intellectual property in exchange for something
of value; usually money. For example, in return for a sum of money, you might be

granted the right to incorporate code from someone’s software program into your
own.

The developers of this software are willing to trade you the right to use their
intellectual property in exchange for something of value. However, instead of money,
the developers are willing to trade you the right to freely incorporate their code into
your software in exchange for the right to freely incorporate your code [which
incorporates their code] into theirs. This exchange is to be done by way of and under
the terms of the GPL. If you do not think that this is a fair bargain, you are free to
decline and to develop your own code or purchase it from someone else. You will still
be allowed to use the software, which is awfully nice of the developers, since you
probably didn’t pay them a penny for it in the first place.

Microsoft complains that the GPL does not allow them to take such code and make
changes that it can keep proprietary, but this is hypocritical. Microsoft doesn’t
normally allow others to make and distribute changes to Microsoft software at all, so
the GPL grants far more rights to customers than Microsoft does.

In some cases Microsoft will release source code under its “shared source” license,
but that license (which is not OSS/FS) is far more restrictive. For example, it
prohibits distributing software in source or object form for commercial purposes
under any circumstances. Examining Microsoft’s shared source license also shows
that it has even more stringent restrictions on intellectual property rights. For
example, it states that “if you sue anyone over patents that you think may apply to the
Software for a person’s use of the Software, your license to the Software ends
automatically,” and “the patent rights Microsoft is licensing only apply to the
Software, not to any derivatives you make.” A longer analysis of this license and the
problems it causes developers is provided by Bernhard Rosenkraenzer (bero). The
FSF has also posted a press release on why they believe the GPL protects software
freedoms.

It’s true that organizations that modify and release GPL’ed software must yield any
patent and copyright rights for those additions they release, but such organizations do
so voluntarily (no one can force anyone to modify GPL code) and with full
knowledge (all GPL’ed software comes with a license clearly stating this). And such
grants only apply to those modifications; organizations can hold other unrelated rights
if they wish to do so, or develop their own software instead. Since organizations can’t
make such changes at all to proprietary software in most circumstances, and generally
can’t redistribute changes in the few cases where they can make changes, this is a fair
exchange, and organizations get far more rights with the GPL than with proprietary
licenses (including the “shared source” license). If organizations don’t like the GPL
license, they can always create their own code, which was the only option even before
GPL’ed code became available.

Although the GPL is sometimes called a “virus” by proprietary vendors (particularly
by Microsoft) due to the way it encourages others to also use the GPL license, it’s
only fair to note that many proprietary products and licenses also have virus-like
effects. Many proprietary products with proprietary data formats or protocols have
“network effects,” that is, once many users begin to use that product, that group puts
others who don’t use the same product at a disadvantage. For example, once some
users pick a particular product such as a proprietary OS or word processor, it becomes
increasingly difficult for other users to use a different product. Over time this
enforced use of a particular proprietary product also spreads like a virus.

Certainly many technologists and companies don’t think that the GPL will destroy
their businesses. Many seem too busy mocking Microsoft’s claims instead (for an
example, see John Lettice’s June 2001 article “ Gates: GPL will eat your economy,
but BSD’s cool”). After all, Microsoft sells a product with GPL’ed components, and
still manages to hold intellectual property (see below).

Perhaps Microsoft means the GPL “destroys” intellectual property because the
owners of competing software may be driven out of business. If so, this is
hypocritical; Microsoft has driven many companies out of business, or bought them
up at fractions of their original price. Indeed, sometimes the techniques that Microsoft
used have later been proven in court to be illegal. In contrast, there is excellent
evidence that the GPL is on very solid legal ground. “Destruction” of one
organization by another through legal competition is quite normal in capitalistic
economies.

The GPL does not “destroy” intellectual property; instead, it creates a level playing
field where people can contribute improvements voluntarily to a common project
without having them “stolen” by others. You could think of the GPL as creating a
consortium; no one is required to aid the consortium, but those who do must play by
its rules. The various motivations for joining the consortium vary considerably (see
the article License to FUD), but that’s true for any other consortium too. It’s
understandable that Microsoft would want to take this consortium’s results and take
sole ownership of derivative works, but there’s no reason to believe that a world
where the GPL cannot be used is really in consumers’ best interests.

The argument is even more specious for non-GPL’ed code. Microsoft at one time
protested about open source software, but indeed, they are a key user of open source
software; key portions of Microsoft Windows (including much of their Internet
interfacing software) and Microsoft Office (such as compression routines) include
open source software. In 2004, Microsoft released an installation tool, WiX, as open
source software on SourceForge.

12. Is there really a lot of OSS/FS software? Yes. Freshmeat.net counts over 21,000
software branches of OSS/FS software as of October 2002. Sourceforge.net hosts
55,424 OSS/FS projects all by itself (as of January 28, 2003). The dmoz list of just
OS counts 114 OSS/FS OSes; this includes old systems (re-enabling their support),
experiments, and specialized projects. There’s little reason to believe that this counts
all OSS/FS software, but it certainly indicates there’s a large amount of it. These
projects vary in value and quality, of course, just as proprietary programs do, but all
of these OSS/FS projects can be the basis of future work.

13. Is having the ability to view and change source code really valuable/important
for many people? Surprisingly, yes. It’s certainly true that few people need direct
access to source code; only developers or code reviewers need the ability to access
and change code. But not having access to how your computer is controlled is still a
significant problem. Bob Young of Red Hat uses the analogy of having your car’s
hood welded shut to explain why even non-technical users need access to the source
code. Here is his explanation, in his own words:

Open source gives the user the benefit of control over the technology the user is
investing in... The best analogy that illustrates this benefit is with the way we buy
cars. Just ask the question, “Would you buy a car with the hood welded shut?” and we
all answer an emphatic “No.” So ask the follow-up question, “What do you know
about modern internal-combustion engines?” and the answer for most of us is, “Not
much.”

We demand the ability to open the hood of our cars because it gives us, the consumer,
control over the product we’ve bought and takes it away from the vendor. We can
take the car back to the dealer; if he does a good job, doesn’t overcharge us and adds
the features we need, we may keep taking it back to that dealer. But if he overcharges
us, won’t fix the problem we are having or refuses to install that musical horn we
always wanted -- well, there are 10,000 other car-repair companies that would be
happy to have our business.

In the proprietary software business, the customer has no control over the technology
he is building his business around. If his vendor overcharges him, refuses to fix the
bug that causes his system to crash or chooses not to introduce the feature that the
customer needs, the customer has no choice. This lack of control results in high cost,
low reliability and lots of frustration.

To developers, source code is critical. Source code isn’t necessary to break the
security of most systems, but to really fix problems or add new features it’s quite
difficult without it. Microsoft’s Bill Gates has often claimed that most developers
don’t need access to OS source code, but Graham Lea’s article “Bill Gates’ roots in
the trashcans of history” exposes that Gates actually extracted OS source code
himself from other companies by digging through their trash cans. Mr. Gates said,
“I’d skip out on athletics and go down to this computer center. We were moving
ahead very rapidly: Basic, FORTRAN, LISP, PDP-10 machine language, digging out
the OS listings from the trash and studying those.” If source code access isn’t needed
by developers, why did he need it?

See also the discussion on the greater flexibility of OSS/FS.

14. Is OSS/FS really just an anti-Microsoft campaign? No. Certainly there are people
who support OSS/FS who are also against Microsoft, but it’d be a mistake to view
OSS/FS as simply anti-Microsoft. Microsoft already uses OSS/FS software in its own
applications; Windows’ implementation of the basic Internet protocols (TCP/IP) was
derived from OSS/FS code, and its Office suite depends on the OSS/FS compression
library “zlib.” Microsoft could, at any time, release programs such as its OSes as
OSS/FS, take an existing OSS/FS OS and release it, or provide applications for
OSS/FS systems. There is no licensing agreement that prevents this. Indeed, OSS/FS
leaders often note that they are not against Microsoft per se, just some of its current
business practices, and many have repeatedly asked Microsoft to join them (e.g., see
Free Software Leaders Stand Together).

In many cases OSS/FS is developed with and for Microsoft technology. On June 21,
2002, SourceForge listed 831 projects that use Visual Basic (a Microsoft proprietary
technology) and 241 using C# (a language that originated from Microsoft). A
whopping 8867 projects are listed as working in Windows. This strongly suggests
that there are many OSS/FS developers who are not “anti-Microsoft.”

Microsoft says it’s primarily opposed to the GPL, but Microsoft sells a product with
GPL’ed components. Microsoft’s Windows Services for Unix includes Interix, an
environment which can run UNIX-based applications and scripts on the Window NT
and Windows 2000 OSes. There’s nothing wrong with this; clearly, there are a lot of
Unix applications, and since Microsoft wants to sell its OSes, Microsoft decided to
sell a way to run Unix applications on its own products. But many of the components
of Interix are covered by the GPL, such as gcc and g++ (for compiling C and C++
programs). (Microsoft seems to keep moving information about this; here is a stable
copy). The problem is not what Microsoft is doing; as far as I can tell, they’re

following both the letter and the spirit of the law in this product. The problem is that
Microsoft says no one should use the GPL, and that no one can make money using
the GPL, while simultaneously making money using the GPL. Bradley Kuhn (of the
FSF) bluntly said, “It’s hypocritical for them to benefit from GPL software and
criticize it at the same time.” Microsoft executives are certainly aware of this use of
the GPL; Microsoft Senior Vice President Craig Mundie specifically acknowledged
this use of GPL software when he was questioned on it. Kelly McNeill noted this
dichotomy between claims and actions in the June 22, 2001 story “Microsoft Exposed
with GPL’d Software!” A more detailed description about this use of the GPL by
Microsoft is given in The Standard on June 27, 2001. Perhaps in the future Microsoft
will try to remove many of these GPL’ed components so that this embarrassing state
of affairs won’t continue. But even if these components are removed in the future,
this doesn’t change the fact that Microsoft has managed to sell products that include
GPL-covered code without losing any of its own intellectual property rights.

That being said, there are certainly many people who are encouraging specific
OSS/FS products (such as Linux) so that there will be a viable competition to
Microsoft, or who are using the existence of a competitor to obtain the best deal from
Microsoft for their organization. This is nothing unusual - customers want to have
competition for their business, and they usually have it in most other areas of
business. Certainly there is a thriving competing market for computer hardware,
which has resulted in many advantages for customers. The New York Times’ position
is that “More than two dozen countries - including Germany and China - have begun
to encourage governmental agencies to use such “open source” software ...
Government units abroad and in the United States and individual computer users
should look for ways to support Linux and Linux-based products. The competition it
offers helps everyone.”

15. I’ve always assumed there’s no free lunch; isn’t there some catch? If there is an
OSS/FS product that meets your needs, there really isn’t a catch. Perhaps the only
catch is misunderstanding the term “free.” The GPL includes this (haiku) text: “When
we speak of free software, we are referring to freedom, not price.” I.E., OSS/FS is not
necessarily cost-free. In practice, it’s still often a bargain.

Naturally, if you want services besides the software itself (such as guaranteed
support, training, and so on), you must pay for those things just like you would for
proprietary software. If you want to affect the future direction of the software -
especially if you must have the software changed in some way to fit it to your needs -
then you must invest to create those specific modifications. Typically these
investments involve hiring someone to make those changes, possibly sharing the cost
with others who also need the change. Note that you only need to pay to change the
software - you don’t need to pay for permission to use the software, or a per-copy fee,
only the actual cost of the changes.

For example, when IBM wanted to join the Apache group, IBM discovered there
really was no mechanism to pay in money. IBM soon realized that the primary
“currency” in OSS/FS is software code, so IBM turned the money into code and all
turned out very well.

This also leads to interesting effects that explains why many OSS/FS projects start
small for years, then suddenly leap into a mode where they have a rapidly increasing
functionality and user size. For any application, there is a minimum level of
acceptable functionality; below this, there will be very few users. If that minimum
level is large enough, this creates an effect similar to an “energy barrier” in physics;

the barrier can be large enough that most users are not willing to pay for the initial
development of the project. However, at some point, someone may decide to begin
the “hopeless” project anyway. The initial work may take a while, because the initial
work is large and there are few who will help. However, once a minimum level of
functionality is reached, a few users will start to use it, and a few of them may be
willing to help (e.g., because they want the project to succeed or because they have
specialized needs). At some point in this growth, it is like passing an energy barrier;
the process begins to become self-sustaining and exponentially increasing. As the
functionality increases, the number of potential users begins to increase rapidly, until
suddenly the project is sufficiently usable for many users. A percentage of the
userbase will decide to add new features, and as the userbase grows, so do the number
of developers. As this repeats, there is an explosion in the program’s capabilities.

10. OSS/FS on the desktop: Client
computing
OSS/FS programs are have been competing for many years in the server market, and are now
well-established in that market. OSS/FS programs have been competing for several years in
the embedded markets, and have already begun to significantly penetrate those markets as
well.

In contrast, OSS/FS programs currently have only a small client (desktop and laptop) market
share. This is unsurprising; OSS/FS only began to become viable for client computing in
2002, and it takes time for any software to mature, be evaluated, and be deployed. Since
OSS/FS is a brand new contender in the client market, it has only begun penetrating into that
market. However, there are reasons to think that OSS/FS use on client systems will grow
significantly in the future.

A few definitions are necessary first, before examining the issue in more depth. Many users’
only direct experience with computers is through their desktop or laptop computers running
“basic client applications” such as a web browser, email reader, word processor, spreadsheet,
and presentation software (the last three together are often called an “office suite”), possibly
with additional client applications, and all of these must have a graphical user interface and be
supported by an underlying graphical environment. Such computers are often called “client”
computers (even if they are not using the technical approach called the “client-server model”).
Another term also used is the “desktop”, even if the computer is not on a desk.

However, the small market share should not be surprising, because viable OSS/FS client
applications only became available in 2002. As a practical matter, client systems must be
compatible with the market leader, for example, the office suite must be able to read and write
documents in the Microsoft Office formats. Before 2002 the available OSS/FS products could
not do this well, and thus were unsuitable for most circumstances. Clearly, OSS/FS client
applications cannot be considered unless they are already available.

One point less understood is that OSS/FS operating systems (like GNU/Linux) could not
really compete with proprietary operating systems on the client until OSS/FS basic client
applications and environment were available. Clearly, few users can even consider buying a
client system without basic client applications, since that system won’t meet their
fundamental requirements. There have been proprietary basic client applications for
GNU/Linux for several years, but they didn’t really make GNU/Linux viable for client
applications. The reason is that a GNU/Linux system combined with proprietary basic client
applications still lacks the freedoms and low cost of purely OSS/FS systems, and the

combination of GNU/Linux plus proprietary client applications has to compete with
established proprietary systems which have many more applications available to them. This
doesn’t mean that GNU/Linux can’t support proprietary programs; certainly some people will
buy proprietary basic client applications, and many people have already decided to buy many
other kinds of proprietary applications and run them on a GNU/Linux system. However, few
will find that a GNU/Linux system with proprietary basic client applications has an advantage
over its competition. After all, the result is still proprietary, and since there are fewer desktop
applications of any kind on GNU/Linux, many capabilities have been lost, little has been
gained, and the switching costs will dwarf those minute gains. There is also the problem of
transition. Many organizations will find it too traumatic to immediately switch all client
systems to an OSS/FS operating system; it is often much easier to slowly switch to OSS/FS
basic client applications on the pre-existing proprietary operating system, and then switch
operating systems once users are familiar with the basic client applications. Thus, the recent
availability of OSS/FS basic client applications has suddenly made OSS/FS operating systems
(like GNU/Linux) far more viable on the client.

First, let’s look at the available market share figures. According to the June 2000 IDC survey
of 1999 licenses for client machines, GNU/Linux had 80% as many client shipments in 1999
as Apple’s MacOS (5.0% for Mac OS, 4.1% for GNU/Linux). More recent figures in 2002
suggest that GNU/Linux has 1.7% of the client OS market. Clearly, the market share is small
at this early stage. Obviously, while this shows that there are many users (because there are so
many client systems), this is still small compared to Microsoft’s effective monopoly on the
client OS market. IDC reported that Windows systems (when they are all combined)
accounted for 92% of the client operating systems sold.

However, there are many factors that suggest that the situation is changing: OSS/FS basic
client software is now available, there’s increasing evidence of their effectiveness, Microsoft
is raising prices, and organizations (including governments) want open systems:

1. OSS/FS basic client software is available. Back in 1997 I forecast that GNU/Linux
would be “ready for the desktop” in 2002-2003 (5 years later). My forecast appears
correct; OSS/FS applications and environments matured in 2002 where they are
finally functionally competitive on the client. In 2002, Mozilla finally released
version 1.0 of their suite (including a web browser, email reader, and other tools), and
the first reasonably usable version of Open Office, the first practically useful OSS/FS
office suite, was released in 2002 as well. Desktop environments matured as well; in
2002 both the GNOME and KDE projects released capable, more mature versions of
their desktop environments. In addition the WINE product (a product that allows
OSS/FS systems to run Windows programs) was finally able to run Microsoft Office
97, suggesting that although WINE is still immature, it may be sufficient to run some
Windows applications developed internally by some organizations.

There are other plausible alternatives for client applications as well, such as Evolution
(an excellent mail reader), Abiword (a lighter-weight but less capable word processor
which also released its version 1.0 in 2002), Gnumeric (a spreadsheet), and KOffice
(an office suite).

However, I will emphasize Mozilla and Open Office, for two reasons. First, they also
run on Microsoft Windows, which makes it much it easier to transition users from
competitors (this enables users to migrate a step at a time, instead of making one
massive change). Second, they are full-featured, including compatibility with
Microsoft’s products; many users want to use fully-featured products since they don’t
want to switch programs just to get a certain feature. In short, it looks like there are
now several OSS/FS products that have begun to rival their proprietary competitors in

both usability and in the functionality that people need, including some very capable
programs.

2. There is increasing evidence of OSS/FS client software effectiveness. The MOXIE
study of January 2003 randomly acquired 100 documents from the Internet in the
Microsoft Office word processor, spreadsheet, and presentation software formats.
Their leading OSS/FS contender, Open Office version 1.0.1, did well; it was able to
successfully use 97%, 98%, and 94% of the documents (of the respective formats).
The study concluded that “the current state of interoperability is reasonably good,
although there is significant room for improvement.” Since that time, the Open Office
developers have specifically worked to improve interoperability with Microsoft
Office, and it’s reasonable to expect that the figures are significantly higher now.

3. Microsoft has raised its prices. Microsoft is changing many of its practices, resulting
in increasing costs to its customers. It has changed its licensing so that one copy of
Windows cannot be used for both home and office. Microsoft has switched its largest
customers to a subscription-based approach (called “Licensing 6”), greatly increasing
the costs to its customers. TIC/Sunbelt Software Microsoft Licensing Survey Results
(covering March 2002) reports the impact on customers of this new licensing scheme.
80% had a negative view of the new licensing scheme, noting, for example, that the
new costs for software assurance (25% of list for server and 29% of list for clients)
are the highest in the industry. Of those who had done a cost analysis, an
overwhelming 90% say their costs will increase if they migrate to 6.0, and 76% said
their costs would increase from 20% to 300% from what they are paying now under
their current 4.0 and 5.0 Microsoft Licensing plans. Indeed, 38% of those surveyed
said that they are actively seeking alternatives to Microsoft products. Licensing 6.0
can also significantly harm organizations trying to sell off a part of its operations. The
program requires accelerated software maintenance payments when the computers
that are covered under the license are sold off - but Microsoft is no longer obligated to
provide maintenance even if the contract is fully paid.

Gartner’s review of Star Office (Sun’s variant of Open Office) also noted that
Microsoft’s recent licensing policies may accelerate moving away from Microsoft. As
Gartner notes, “This [new license program] has engendered a lot of resentment
among Microsoft’s customers, and Gartner has experienced a marked increase in the
number of clients inquiring about alternatives to Microsoft’s Office suite... enterprises
are realizing that the majority of their users are consumers or light producers of
information, and that these users do not require all of the advanced features of each
new version of Office... unless Microsoft makes significant concessions in its new
office licensing policies, Sun’s StarOffice will gain at least 10 percent market share at
the expense of Microsoft Office by year-end 2004 (0.6 probability).” They also note
that “Because of these licensing policies, by year-end 2003, more than 50 percent of
enterprises will have an official strategy that mixes versions of office automation
products - i.e., between multiple Microsoft Office versions or vendor products (0.7
probability).”

4. Organizations (including governments) want open systems. Organizations, including
governments, do not want to be locked into products and services from a single
vendor. Multiple vendors mean competition between suppliers, generally driving
down costs and increasing quality. See the separate section on governments and
OSS/FS.

There are some interesting hints that GNU/Linux is already starting to gain on the client.
Some organizations, such as TrustCommerce and the city of Largo, Florida, report that
they’ve successfully transitioned to using Linux on the desktop.

Many organizations have found a number of useful processes for making this transition
practical. Many start by replacing applications (and not the operating system underneath) with
OSS/FS replacements. For example, they might switch to Mozilla as a web browser and email
reader, OpenOffice.org for an office suite. Organizations can also move their infrastructure to
web-based solutions that don’t care about the client operating system. Eventually, they can
start replacing operating systems (typically to a GNU/Linux distribution), but still using
various mechanisms to run Microsoft Windows applications on them. Various products allow
users to run Microsoft Windows applications on GNU/Linux, including Windows application
servers, Wine, win4lin, VMWare, and so on.

There’s already some evidence that others anticipate this; Richard Thwaite, director of IT for
Ford Europe, stated in 2001 that an open source desktop is their goal, and that they expect the
industry to eventually go there (he controls 33,000 desktops, so this would not be a trivial
move). It could be argued that this is just a ploy for negotiation with Microsoft - but such
ploys only work if they’re credible.

There are other sources of information on OSS/FS or GNU/Linux for clients.
Desktoplinux.com is a web site devoted to the use of GNU/Linux on the desktop; they state
that “We believe Linux is ready now for widespread use as a desktop OS, and we have created
this website to help spread the word and accelerate the transition to a more open desktop, one
that offers greater freedom and choice for both personal and business users.”

Bart Decrem’s Desktop Linux Technology & Market Overview, funded by Mitch Kapor,
gives a detailed analysis and prognostication of GNU/Linux on the desktop. Paul Murphy
discusses transitioning large companies to Linux and Intel (”Lintel”) on the desktop, and
concludes that one of the biggest risks is trying to copy a Windows architecture instead of
exploiting the different capabilities GNU/Linux offers.

Indeed, it appears that many users are considering such a transition. ZDNet published survey
results on August 22, 2002, which asked “Would your company switch its desktop PCs from
Windows to Linux if Windows apps could run on Linux?” Of the more than 15,000
respondents, 58% said they’d switch immediately; another 25% said they’d consider dumping
Windows in favor of Linux within a year. While all such surveys must be taken with a grain
of salt, still, these are not the kind of responses you would see from users happy with their
current situation. They also noted that ZDNet Australia found that 55% of the surveyed IT
managers were considering switching from Microsoft products. Most people do not expect
that this transition, if it happens, will happen quickly: it is difficult to change that many
systems. But the fact that it’s being considered at all is very intriguing. A number of opinion
pieces, such as Charlie Demerjian’s “The IT industry is shifting away from Microsoft” argue
that there a major IT industry shift toward OSS/FS is already occurring, across the board.

Many analysts believe Microsoft has extended Windows 98 support because it’s worried that
Windows 98 users might switch to GNU/Linux.

11. Usage Reports
There are many reports from various users who have switched to OSS/FS; here are a sample
that you may find useful. This is not an exhaustive list, nor can it be.

As discussed earlier, the City of Largo, Florida supports 900 city employees using
GNU/Linux, saving about $1 million a year. A BusinessWeek online article notes that
Mindbridge shifted their 300-employee intranet software company from Microsoft server
products and Sun Solaris to GNU/Linux; after experiencing a few minor glitches, their Chief

Operating Officer and founder Scott Testa says they now couldn’t be happier, and
summarizes that “...we’re saving hundreds of thousands of dollars between support contracts,
upgrade contracts, and hardware.” Amazon.com saved millions of dollars by switching to
GNU/Linux. Oracle’s Chairman and CEO, Larry Ellison, said that Oracle will switch to
GNU/Linux to run the bulk of its business applications no later than summer 2002, replacing
three Unix servers. A travel application service provider saved $170,000 in software costs
during the first six months of using GNU/Linux (for both servers and the desktop); it also
saved on hardware and reported that administration is cheaper too. CRN’s Test Center found
that a GNU/Linux-based network (with a server and 5 workstations) cost 93% less in software
than a Windows-based network, and found it to be quite capable. The article Linux as a
Replacement for Windows 2000 determined that “Red Hat Linux 7.1 can be used as an
alternative to Windows 2000... You will be stunned by the bang for the buck that Linux
bundled free ‘open source’ software offers.”

Educational organizations have found OSS/FS software useful. The K12 Linux Terminal
Server Project has set up many computer labs in the U.S. Northwest in elementary, middle,
and high schools. For example, St. Mary’s School is a 450-student Pre-K through 8th grade
school in Rockledge, Florida that applying GNU/Linux using their approach. Their examples
show that kids don’t find GNU/Linux that hard to use and quite able to support educational
goals. For example, third graders put together simple web pages about their favorite Saints
using a variety of OSS/FS programs: they logged into GNU/Linux systems, typed the initial
content using Mozilla Composer (an OSS/FS web page editor), drew pictures of the Saints
using The Gimp (an OSS/FS drawing program), and shared the results with Windows users
using Samba. The page Why should open source software be used in schools? gives various
examples of educational organizations who have used OSS/FS programs, as well as linking to
various general documents on why educational organizations should use OSS/FS. The letter
from the Kochi Free Software Users’ Group to the Government of Kerala and others also
summarizes some of the issues, especially why governments should specify standards (and
not products) for educational use. The Faculty Senate of the University at Buffalo, State
University of New York, approved a resolution strongly supporting the use of OSS/FS instead
of proprietary software. The Northwest Educational Technology Consortium has an interest
set of information on OSS/FS on its website, in the section Making Decisions About Open
Source Software (OSS) for K-12.

Many financial organizations use OSS/FS. Online brokerage E*Trade is moving its computer
systems to IBM servers running GNU/Linux, citing cost savings and performance as reasons
for switching to GNU/Linux (the same article also notes that clothing retailer L.L. Bean and
financial services giant Salomon Smith Barney are switching to GNU/Linux as well). Merrill
Lynch is switching to GNU/Linux company-wide, and are hoping to save tens of millions of
dollars annually within three to five years. Adam Wiggins reports on TrustCommerce’s
successful transition to Linux on the desktop. An April 22, 2002 report on ZDNet, titled
“More foreign banks switching to Linux”, stated that New Zealand’s TSB bank “has become
the latest institution to adopt the open-source Linux OS. According to reports, the bank is to
move all its branches to the Linux platform... in Europe, BP and Banca Commerciale Italiana
feature among the big companies that have moved to Linux. According to IBM, as many as
15 banks in central London are running Linux clusters.” They also mentioned that “Korean
Air, which now does all its ticketing on Linux, and motorhome manufacturer Winnebago, are
high-profile examples.” The Federal Aviation Air Traffic Control System Command Center in
Herndon, Virginia is currently installing a system to support 2,000 concurrent users on Red
Hat Linux. The system, known as the National Log, will act as a central clearinghouse
database for users in air traffic centers across the country. ComputerWorld reported in
October 2002 an increasing use of GNU/Linux on Wall Street - Merrill Lynch reports that a
majority of new projects are interested in GNU/Linux, for example, and the article references
a TowerGroup (of Needham, MA) estimate that GNU/Linux is currently deployed on 7% of

all servers in North American brokerage firms. TowerGroup also forecasts that GNU/Linux
use will grow at an annual rate of 22% in the securities server market between 2002 and 2005,
outpacing growth in Windows 2000, NT and Unix deployments.

Some organizations are deploying GNU/Linux widely at the point of sale. Many retailer cash
registers are switching to GNU/Linux, according to Information Week (”Cash Registers are
Ringing up Sales with Linux” by Dan Orzech, December 4, 2000, Issue 815); on September
26, 2002, The Economist noted that “Linux is fast catching on among retailers.” According to
Bob Young (founder of Red Hat), BP (the petroleum company) is putting 3,000 Linux servers
at gas stations. Zumiez is installing open-source software on the PCs at all its retail locations,
and expects that this will cut its technology budget between $250,000 and $500,000 a year;
note that this includes using Evolution for email, Mozilla for web browsing (to eliminate the
need for printed brochures and training manuals), and an open source spreadsheet program.
Sherwin-Williams, the number one U.S. paint maker, plans to convert its computers and cash
registers (not including back office support systems) in over 2,500 stores to GNU/Linux and
has hired IBM to do the job; this effort involves 9,700 NetVista desktop personal computers,

OSS/FS is also prominent in Hollywood. Back in 1996, when GNU/Linux was considered by
some to be a risk, Digital Domain used GNU/Linux to generate many images in Titanic. After
that, it burst into prominence as many others began using it, so much so that a February 2002
article in IEEE Computer stated that “it is making rapid progress toward becoming the
dominant OS in ... motion pictures.” “Shrek” and “Lord of the Rings” used GNU/Linux to
power their server farms, and now DreamWorks SKG has switched to using GNU/Linux
exclusively on both the front and back ends for rendering its movies. Industrial Light &
Magic converted its workstations and renderfarm to Linux in 2001 while it was working on
Star Wars Episode II. They stated that “We thought converting to Linux would be a lot harder
than it was” (from their SGI IRIX machines). They also found that the Linux systems are 5
times faster than their old machines, enabling them to produce much higher quality results.
They also use Python extensively (an OSS/FS language), as well as a number of in-house and
proprietary tools. Disney is also shifting to GNU/Linux for film animation.

Many remote imaging systems use GNU/Linux. When a remote imaging system was placed at
the North Pole, reporters noted that the Linux mascot was a penguin and announced that
Penguins invade the North Pole.

There are many large-scale systems. In October 2002, Chrysler Group announced it’s using a
Linux cluster computer for crash simulation testing and analysis in an effort to make safer
cars and trucks. Their configuration uses 108 workstations, each with 2 processors, so the
system uses 216 computers all running Red Hat Linux, and expect to improve simulation
performance by 20% while saving about 40% in costs.

OSS/FS is widely used by Internet-based companies. Google uses over 6,000 GNU/Linux
servers. Yahoo! is increasing its already-massive use of OSS/FS. Yahoo claims it is the
“World’s most trafficked Internet destination,” justified based on Nielsen/NetRatings of
August 2002. Yahoo had 201 million unique users, 93 million active registered users, over
4500 servers, and over 1.5 billion pageviews a day. Yahoo noted that OSS/FS already runs
their business (e.g., Perl, Apache, FreeBSD, and gcc), and they’ve recently decided to move
from their proprietary in-house languages to PHP (an OSS/FS language). Afilias has switched
the registration database for the .org Internet domain from the proprietary Oracle to the
OSS/FS PostgreSQL database program; .org is the fifth largest top-level domain, with more
than 2.4 million registered domain names.

Bloor Research announced in November 2002 that they believe GNU/Linux is ready to
support large enterprise applications (i.e., it’s “enterprise ready”). They reached this

conclusion after examining its scalability, availability, reliability, security, manageability,
flexibility, and server consolidation characteristics, They concluded that “Linux now scales
well on Intel hardware, and by taking advantage of failover extensions from Linux
distributors and Grid suppliers, high availability can be achieved. Linux is proven to be
reliable, especially for dedicated applications, and its open source nature ensures that it is at
least as secure as its rivals.” Only 3 years earlier Bloor had said GNU/Linux wasn’t ready.

Librarians have also found many advantages to OSS/FS.

One interesting usage story is the story of James Burgett’s Alameda County Computer
Resource Center, one of the largest non-profit computer recycling centers in the United
States. Its plant processes 200 tons of equipment a month in its 38,000-square-foot
warehouse. It has given thousands of refurbished computers to disadvantaged people all over
the world, including as human rights organizations in Guatemala, the hard-up Russian space
program, schools, and orphanages. All of the machines have GNU/Linux installed on them.

Indeed, for well-established products like GNU/Linux, very strong cases can be made for
considering them. On October 18, 2002, Forrester Research reported that “Linux is now ready
for prime time.” They stated that “CIOs have many new reasons to be confident that they’ll
get quality Linux support from their largest application vendors and systems integrators,”
referencing Amazon, Oracle, Sun, and IBM, among others who have made commitments that
increase confidence that GNU/Linux is ready for deployment.

Indeed, these uses are becoming so widespread that Microsoft admits that OSS/FS
competition may force Microsoft to lower its prices, at least in the server market. Microsoft
noted this in its 10-Q quarterly filing, stating that “To the extent the open source model gains
increasing market acceptance, sales of the company’s products may decline, the company
may have to reduce the prices it charges for its products, and revenues and operating margins
may consequently decline.”

Summaries of government use in various countries are available from Infoworld and IDG.

Several organizations collect reports of OSS/FS use, and these might be useful sources for
more information. Linux International has a set of Linux case studies/success stories.
Mandrakesoft maintains a site recording the experiences of business users of the Mandrake
distribution. Red Hat provides some similar information. Opensource.org includes some case
studies.

The Dravis Group LLC published in April 2003 Open Source Software: Case Studies
Examining its Use, examining several specific use cases in depth. Their study of several
different organizations deploying OSS/FS concluded the following:

1. Cost is a significant factor driving adoption of open source software.
2. Control and flexibility are considered benefits as well.
3. Implementation of open solutions is evolutionary, not revolutionary.
4. Open source extends across the entire software stack.
5. Product support is not a significant concern.
6. Open source is not a magic solution.
7. Open standards may be more important than open source.

12. Governments and OSS/FS

Practically all governments use OSS/FS, and many have policies or are considering policies
related to OSS/FS. Motivations vary; for many governments, the overriding rationale for
consideration of OSS/FS is to reduce costs. Others have a more nuanced view, considering a
variety of factors that a commercial firm would also consider such as reliability, performance,
and so on. Some governments also consider OSS/FS for other reasons, such as industrial
policy (trying to encourage local companies who can train, support, and tailor products),
transparency of government (OSS/FS enables complete review of exactly what is done and
what data is stored), and longevity of records (OSS/FS reveals exactly how data is stored).
Few governments want their government computing infrastructure -- or their country’s
infrastructure -- completely controlled by any one company. In many cases, the company is
foreign (or at least not local), which adds additional concerns in some cases.

The Center for Strategic and International Studies developed a 2004 survey of the OSS/FS
positions of various governments worldwide. The Open Source and Industry Alliance
(OSAIA)’s “Roundup of Selected OSS Legislative Activity WorldWide” (aka Policy Tracker)
surveys government OSS policies in 2003 and 2004. The widely-cited Free/Libre and Open
Source Software (FLOSS): Survey and Study includes a great deal of information about
public sector use of OSS/FS. An older but broad survey was published in 2001 by CNet. More
information about governments and OSS/FS can be found at the Center of Open Source and
Government (eGovOS) web site.

A New York Times article noted that “More than two dozen countries in Asia, Europe and
Latin America, including China and Germany, are now encouraging their government
agencies to use ‘open source’ software” Robert Kramer of CompTIA (Computer Technology
Industry Association) says that political leaders everywhere from California to Zambia are
considering legislating a preference for Open Source software use; he counted at least 70
active proposals for software procurement policies that prefer OSS/FS in 24 countries as of
October 2002. There are certainly debates on the value of OSS/FS preferences (even a few
OSS/FS advocates like Bruce Perens don’t support mandating a government preference for
OSS/FS), but clearly this demonstrates significant positive interest in OSS/FS from various
governments.

Tony Stanco’s presentation “On Open Source Procurement Policies” briefly describes why he
believes governments should consider OSS/FS. Ralph Nader’s Consumer Project on
Technology gives reasons he believes the U.S. government should encourage OSS/FS. The
paper Linux Adoption in the Public Sector: An Economic Analysis by Hal R. Varian and Carl
Shapiro (University of California, Berkeley; 1 December 2003) makes several interesting
points about OSS/FS. This paper uses some odd terminology, for example, it uses the term
“commercial software” where it means “closed source software” (this poor terminology
choice makes the paper’s discussion on commercial open source software unnecessarily
difficult to understand). But once its terminology is understood, it makes some interesting
points. It notes that:

1. “The Linux operating system has achieved a ‘critical mass’ sufficient to assure users
that it will be available and improved for years to come, reducing the risk to users and
to software developers.

2. ... users adopting Linux are less likely to face “lock-in” than those adopting
proprietary platform software, and they retain greater control over their own
computing environments. These benefits are especially salient in complex computing
environments ... as often occurs in the public sector.

3. Open source software, such as Linux, typically uses open interfaces [that] typically
lead to a larger, more robust, and more innovative industry and therefore software
with open interfaces should be preferred by public sector officials, as long as it offers
comparable quality to proprietary alternatives.

4. Because Linux is open source platform software, adoption of Linux can help spur the
development of a country’s software sector, in part by promoting the training of
programmers that enables them to develop applications that run on the Linux
platform. The adoption of the Linux platform may well promote the economic
development of commercial software to run in that environment.

5. Fears that the licensing terms associated with Linux discourage the development of
commercial software are misplaced... we expect mixed computing environments
involving open source software and commercial software, that employ both open and
proprietary interfaces, to flourish in the years ahead.

Many countries favor or are considering favoring OSS/FS in some way, such as Peru, the UK,
and Taiwan.

The following sections describe some government actions in the United States, Europe, and
elsewhere. There is also a section on some attempts or perceived attempts to prevent
government consideration of OSS/FS. However, this information is by no means complete;
this is simply a sample of some of the ongoing activities.

12.1 United States

There are many government users of OSS/FS in the United States, and a variety of related
policies, studies, and recommendations. This includes departments and agencies of the federal
government, as well as state and local governments. Many have advocated additional use or
changes in approach. A summary of some of this information is below.

The U.S. federal government has a formal policy of neutrality, that is, OSS/FS and proprietary
software must be considered using the same criteria, as noted in Office of Management and
Budget memorandum M-04-16 of July 1, 2004. This mirrors the earlier 2003 OSS/FS policy
of the U.S. Department of Defense, which clearly states that OSS/FS and proprietary are both
acceptable but must follow the same rules. Both also note that the license requirements for
OSS/FS are different than proprietary software, so acquirers should make sure they
understand the license requirements since they may be different from what they’re used to.

The (U.S.) President’s Information Technology Advisory Committee (PITAC)’s report, the
Recommendations of the Panel on Open Source Software For High End Computing,
recommends that the U.S. “Federal government should encourage the development of open
source software as an alternate path for software development for high end computing.” See
the separate discussion on MITRE Corporation’s business case study of OSS (which
emphasized use by the U.S. government, especially the U.S. military).

A NASA technical report describes in detail an approach for NASA to release some of its
software as open source software.

The U.S. National Imagery and Mapping Agency (NIMA) National Technical Alliance,
through the National Center for Applied Technology (NCAT) consortium, funded the Open
Source Prototype Research (OSPR) project. Under the OSPR project ImageLinks Inc., Tybrin
Inc., Kodak Inc., and Florida Institute of Technology (Florida Tech) performed evaluations of
open source software development practices and demonstrated the technological advantages
of Open Source Software. The OSPR final report includes those evaluations, a survey, and
various related documents; these are actually rather extensive. The final report concludes:

Open Source Software development is a paradigm shift and has enormous potential for
addressing government needs. Substantial technology leverage and cost savings can be

achieved with this approach. The primary challenge will be in establishing an organizational
structure that is able to employ OSS methodology...

The paper Open Source and These United States by C. Justin Seiferth summarizes that:

The Department of Defense can realize significant gains by the formal adoption, support and
use of open licensed systems. We can lower costs and improve the quality of our systems and
the speed at which they are developed. Open Licensing can improve the morale and retention
of Airmen and improve our ability to defend the nation. These benefits are accessible at any
point in the acquisition cycle and even benefit deployed and operational systems. Open
Licensing can reduce acquisition, development, maintenance and support costs and increased
interoperability among our own systems and those of our Allies.
NetAction has proposed more OSS/FS use and encouragement by the government; see The
Origins and Future of Open Source Software by Nathan Newman and The Case for
Government Promotion of Open Source Software by Mitch Stoltz for their arguments.

More recently, The U.S. Department of Defense Information Systems Agency (DISA) has
certified Linux distributor Red Hat’s Advanced Server operating system as a “Common
Operating Environment” (COE), meaning the server product meets the agency’s software
security and interoperability specification.

U.S. state governments have widely used OSS/FS too. The Center for Digital Government’s
2003 “Best of the Web” awards named the top 5 state web sites as Utah, Maine, Indiana,
Washington, and Arkansas. Four of the five winning state web sites use OSS/FS programs to
implement their site. The only state in the top five not using OSS/FS was Washington -
Microsoft’s home state.

Some states, such as Massachusetts, have a formal policy encouraging the use of open
standards. It is often easier to deploy OSS/FS, if you choose to do so, if you’re already using
open standards; it’s much more difficult to change to either a proprietary or OSS/FS product
if you’re stuck using proprietary standards.

A report from the state of California urges that “the state should more extensively consider
use of open source software, stating that OSS/FS “can in many cases provide the same
functionality as closed source software at a much lower total cost of ownership”.

California’s Air Resources Board (ARB) has had a great deal of experience with OSS/FS;
their web page on ARB’s Open Source Initiatives provides much more information.

Stanislaus County has saved significant amounts of money through smart migration to
OSS/FS programs like Linux and JBoss. Richard Robinson, the director of strategic business
technology (not the county’s CEO), once worked at Accenture (Anderson Consulting) and has
been working hard to identify the county’s needs and meet them. In two years, he’s reduced
costs in his department by 30-65% depending on how you measure it. In 2002, 2% of the
county’s servers used Linux; by 2004, 25% use Linux, and next year that’s expected to
increase to 33%.

12.2 Europe

The Interchange of Data between Administrations (IDA) programme is managed by the
European Commission, with a mission to “coordinate the establishment of Trans-European
telematic networks between administrations.” IDA has developed a vast amount of OSS/FS
information, including an extraordinary amount of information specific to Europe. IDA’s

Open Source Observatory provides a great deal of OSS/FS background information, OSS/FS
news, European OSS/FS case studies, OSS/FS events (both European and abroad), and other
material. IDA also provides The IDA Open Source Migration Guidelines to describe how to
migrate from proprietary programs to OSS/FS programs. The authors state that “There are
many reasons for Administrations to migrate to OSS. These include: the need for open
standards for e-Government; the level of security that OSS provides; the elimination of forced
change; the cost of OSS. All these benefits result in far lower [Information Technology]
costs.” Another paper of interest to governments considering OSS/FS is Paul Dravis’ “Open
Source Software: Perspectives for Development”, developed for the World Bank Group. The
Consortium for Open Source in the Public Administration aims to analyze the effects of
introducing open data standards and Open Source software for personal productivity and
document management in European public administrations.

In 2002 an independent study was published by the European Commission. Titled ”Pooling
Open Source Software”, and financed by the Commission’s Interchange of Data between
Administrations (IDA) programme, it recommends creating a clearinghouse to which
administrations could “donate” software for re-use. This facility would concentrate on
applications specific to the needs of the public sector. More specifically, the study suggests
that software developed for and owned by public administrations should be issued under an
open source license, and states that sharing software developed for administrations could lead
to across-the-board improvements in efficiency of the European public sector.

In October 2002, the European Commission awarded Netproject a pilot contract valued at
EUR250,000 to examine deployment of OSS/FS in government departments.

As reported in the Washington Post on November 3, 2002, Luis Millan Vazquez de Miguel,
the minister of education, science and technology in a western region of Spain called
Extremadura, is heading the launch of a government campaign to convert all the area’s
computer systems (in government offices, businesses and homes) from the Windows
operating system to GNU/Linux. Vazquez de Miguel said over 10,000 desktop machines have
already been switched, with 100,000 more scheduled for conversion in the next year. The
regional government paid a local company $180,000 to create a set of freely available
software, and invested in a development center that is creating customized software. “So far,
the government has produced 150,000 discs with the software, and it is distributing them in
schools, electronics stores, community centers and as inserts in newspapers. It has even taken
out TV commercials about the benefits of free software.” The Post also discussed some of the
reasons some governments are turning to OSS/FS. “Among the touchiest issues that Microsoft
faces outside the United States is the uneasiness some countries have expressed about
allowing an American company to dominate the software industry in their country. ‘Non-U.S.
governments in particular view open source as a way to break the stranglehold against
Microsoft. If Microsoft owns everything their countries, their own companies can’t get a
foothold in the software industry,’ said Ted Schadler, an analyst for Forrester Research Inc.”
Some Spanish government systems and those belonging to the telecommunications company
Telefonica recently were shifted to Linux partly because of security concerns. In Florence,
legislators talked of breaking the ‘the computer science subjection of the Italian state to
Microsoft.’ “

Germany intends to increase its use of OSS/FS. IBM signed a Linux deal with Germany;
Germany’s Interior Minister, Otto Schilly, said the move would help cut costs, improve
security in the nation’s computer networks, and lower dependence on any one supplier.

Munich, Germany (the third largest German city) has decided to migrate all of its 14,000
computers in public administration to GNU/Linux and other OSS/FS office applications,
dropping Microsoft’s Windows in the process. USA Today gives a detailed discussion of how

this decision was made. Here’s more information about the Munich approach. The
GNU/Linux system bid had a somewhat higher cost than the lowest cost Microsoft bid, but
when looking at the details, the claim that Microsoft was lower cost appears misleading --
Microsoft’s bid was significantly different than the GNU/Linux bid. For example, in
Microsoft’s bid, the Windows systems wouldn’t be upgraded for 6 years. Who doesn’t
upgrade for 6 years? If Munich had agreed to that in 1998, in 2004 they’d still be running
only Windows 98 and NT 4.0. Also, in Microsoft’s low bid, many systems would only get the
word processor Word, not a full office suite (GNU/Linux systems typically come with
complete office application suites at no additional cost, important for people who suddenly
need to read presentations and spreadsheets). Also, some have noted that many of the costs
for the GNU/Linux approach can be viewed as a “removing Microsoft” cost rather than the
cost of using GNU/Linux per se; delaying the switch could have made the cost of switching
later even larger due to increased lock-in. It’s likely, however, that this decision was made
with a long-term view of many issues, not solely by cost.

Finnish MPs are encouraging the use of GNU/Linux in government systems.

Statskontoret, the Swedish Agency for Public Management, has performed a feasibility study
on free and open source software and came to very positive conclusions (see the report in
English or Swedish).

On October 10, 2002, the Danish Board of Technology released a report about the economic
potential in using Open Source software in the public administration. The report showed a
potential savings of 3.7 billion Danish Kroners (500 million Euros) over four years. A pilot
project in the Hanstholm municipality determined that switching the office suite from
Microsoft Office to OpenOffice.org and StarOffice did not increase their number of problems
and that each user only needed 1 to 1.5 hours of training to learn the new office suite. The
municipality will now use OpenOffice.org and StarOffice on all workplaces (200 in all) and
will save 300,000 Danish Kroners (about 40,000 Euros) each year in license fees. They will
still use Microsoft Windows as their OS. You may want to see the Danish government’s
report on OSS/FS.

In July 2002, UK Government published a policy on the use of Open Source Software. This
policy had the following points:

1. UK Government will consider OSS solutions alongside proprietary ones in IT
procurements. Contracts will be awarded on a value for money basis.

2. UK Government will only use products for interoperability that support open
standards and specifications in all future IT developments.

3. UK Government will seek to avoid lock-in to proprietary IT products and services.
4. UK Government will consider obtaining full rights to bespoke software code or

customisations of COTS (Commercial Off The Shelf) software it procures wherever
this achieves best value for money.

5. UK Government will explore further the possibilities of using OSS as the default
exploitation route for Government funded R&D software.

As follow-on work, the United Kingdom’s Office of Government Commerce (OGC)
performed “proof of concept” trials of Open Source Software (OSS) in a range of public
bodies. In October 2004 summarized its key findings taking into account information from
elsewhere. Their Government Open Source Software Trials Final Report is publicly available,
and has some very interesting things to say. A brief news article describes the report. The
report concludes that:

• Viability of OSS: Open Source software is a viable and credible alternative to
proprietary software for infrastructure implementations, and for meeting the
requirements of the majority of desktop users;

• Obstacles to implementation: The main obstacles to widespread implementation of
Open Source software are: for desktop applications, the current lack of complex
functionality which can affect ease of migration and interoperability for some
organisations; and for business applications, the lack of Open Source products to
compete with large-scale proprietary enterprise-level products; no significant
obstacles were noted for the adoption of Open Source in infrastructure developments;

• Costs and benefits: Adoption of Open Source software can generate significant
savings in hardware and software costs for infrastructure implementation, and reduce
the licensing costs and hardware refresh requirements for desktop implementation;

• Lessons learned: Adoption of Open Source, particularly for the desktop, requires
investment in planning, training of users, development of skills for implementation
and support, and detailed consideration of migration and interoperability issues.

The UK report recommended that public sector bodies should:

1. examine carefully the technical and business case for implementation of Open Source
software and the role which OSS could play in current and future projects, working
with their outsourced IT providers where appropriate;

2. review the potential for server consolidation, comparing the benefits of OSS with
proprietary solutions;

3. consider the potential costs and benefits of migration to an OSS desktop for
transaction users, (potentially in conjunction with use of “thin client” architecture
solutions);

4. identify the role of open standards in future IS/IT strategy and policy, in conformance
with the e-Government Interoperability Framework (eGIF);

5. consider requirements for the development of skills in Open Source development,
deployment and operation within the organisation, and review the availability of such
skills in their outsourced IT service providers;

6. review their current infrastructure and applications - in collaboration with their
outsourced IT providers where relevant - well in advance of any planned procurement
or renewal, and determine whether current technologies and IT policies inhibit future
choice; and if so consider what steps may be necessary to prevent future “lock in”;

7. consider the benefits of incremental change by diversifying OSS use beyond the
server platform to products like Email, LDAP, Web and internet Browser.

12.3 Other Countries

A Linux Journal article notes many interesting international experiments and approaches, for
example, Pakistan plans to install 50,000 low cost computers in schools and colleges all over
Pakistan using GNU/Linux. A June 14, 2002 article in PC World also lists actions various
governments are taking.

The Korean government announced that it plans to buy 120,000 copies of Hancom Linux
Deluxe this year, enough to switch 23% of its installed base of Microsoft users to open source
equivalents; by standardizing on GNU/Linux and HancomOffice, the Korean government
expects savings of 80% compared with buying Microsoft products (HancomOffice isn’t
OSS/FS, but GNU/Linux is). Taiwan is starting a national plan to jump-start the development
and use of OSS/FS.

Peru has even been contemplating passing a law requiring the use of OSS/FS for public
administration (government); rationale for doing so, besides saving money, include

supporting “Free access to public information by the citizen, Permanence of public data, and
the Security of the State and citizens.” Dr. Edgar David Villanueva Nuñez (a Peruvian
Congressman) has written an interesting letter supporting this law. Marc Hedlund written has
a brief description of the letter; an English translation is available (from GNU in Peru, UK’s
“The Register”, and Linux Today); there is a longer discussion of this available at Slashdot.
Whether or not this law passes, it is an interesting development.

Sun Microsystems has announced a deal with China to provide one million Linux desktops,
and mentioned that China “has pledged to deploy 200 million copies of open standards-based
desktop software”.

South Africa’s government departments are being officially encouraged to stop using
(expensive) proprietary software, and to OSS/FS instead. This is according to a January 15,
2003 announcement by Mojalefa Moseki, chief information office with the State Information
Technology Agency (Sita). South Africa plans to save 3 billion Rands a year (approximately
$338 million USD), increase spending on software that stays in their country, and increase
programming skill inside the country. Soutch Africa reports that its small-scale introductions
have already saved them 10 million Rands (approximately $1.1 million USD). More
information is available at Tectonic (see also South African minister outlines OSS plans). The
state of Oregon is considering an OSS/FS bill as well. Japan has earmarked 1 billion yen for a
project to boost operating systems other than Microsoft Windows - it is expected to be based
on OSS/FS, particularly Linux, and both South Korea and China are coordinating with Japan
on it. In December 2003, Israel’s government suspended purchases of new versions of
Microsoft office software and began actively encouraging the development of an open-source
alternatives (especially Open Office). Indian President A.P.J. Abdul Kalam called for his
country’s military to use OSS/FS to ward off cybersecurity threats; as supreme commander of
the Indian armed forces, this is a directive he can implement.

Brendan Scott’s Research Report: Open Source and the IT Trade Deficit of July 2004 found
that in just Australia, the costs of just the closed source operating system were causing an
Australian trade deficit of $430 million per year.

There have been many discussions about the advantages of OSS/FS in less developed
countries. Heinz and Heinz argue in their paper Proprietary Software and Less-Developed
Countries - The Argentine Case that the way proprietary software is brought to market has
deep and perverse negative consequences regarding the chances of growth for less developed
countries. Danny Yee’s Free Software as Appropriate Technology argues that Free Software
is an appropriate technology for developing countries, using simple but clear analogies. Free
as in Education: Significance of the Free/Libre and Open Source Software for Developing
Countries, commissioned by the Finnish Ministry for Foreign Affairs, examines the
significance of OSS/FS and related concepts; their FLOSS for Development website identifies
other analyses of OSS/FS to support their goal, “To find out if and how Free/Libre and Open
Source software is useful for developing countries in their efforts to achieve overall
development, including bridging the digital divide.”

12.4 Countering Government Use of OSS/FS

Many proprietary companies compete with OSS/FS products. The rise of competition in IT
markets, particularly in places where there hadn’t been competition before, has had the
general beneficial effect of lowering the costs of software to governments. Even simply
threatening to use a different supplier is often enough to gain concessions from all vendors,
and since governments are large customers, they often gain large concessions. And of course
all companies work to provide information on their products that puts them in the best

possible light. Competing in terms of technical capabilities, cost, support, and so on is a
normal part of government acquisition, and not further considered here.

However, there have been some efforts (or at least perceived efforts) to prevent government
use of OSS/FS, or forbid use of the most common OSS/FS license (the GPL). Generally these
efforts have not had much success.

As described in “Geek activism” forces Congress to reconsider Open Source, in 2002 a letter
from the U.S. Congress unrelated to OSS/FS was modified by Representative Adam Smith
from Washington state. Smith’s largest campaign donation source is Microsoft Corporation.
The modifications added statements strongly discouraging the use of the GPL. The letter was
originally signed by 67 Congressmen, but as an Associated Press piece notes, “Smith’s attack
on open-source drew an angry response from one of the original authors of the letter, Rep.
Tom Davis, R-Va., chairman of the House Government Reform subcommittee on technology
and procurement policy. “We had no knowledge about that letter that twisted this position
into a debate over the open source GPL issues,” said Melissa Wojciak, staff director of the
subcommittee. Wojciak added that Davis supports government funding of open-source
projects.” At the end, “Many staffers of the 67 Congressman who signed are now claiming
they didn’t know what they were signing and the letter has been withdrawn.” Information
Week also picked up the story. Also in 2002, the Washington Post reported in 2002 that there
had been an aggressive lobbying effort to squelch use of OSS/FS in the the U.S. Department
of Defense. The effort didn’t work; the DoD released an official policy of neutrality.

So many governments have begun officially requiring that OSS/FS options be considered, or
enacting preferences for OSS/FS, that Microsoft has sponsored an organization called the
Initiative for Software Choice. Many observers believe the real purpose of this organization is
to prevent governments from considering the advantages or disadvantages of a software
license when they procure software, to prevent governments from requiring consideration of
OSS/FS products, and to encourage the use of standards that inhibit the use of OSS/FS.
Indeed, Microsoft has invested large sums of money to lobby against OSS/FS, according to
CIO magazine.

An opposing group, founded by Bruce Perens, is Sincere Choice.org, which advocates that
there be a “fair, competitive market for computer software, both proprietary and Open
Source.” Bruce Perens has published an article discussing why he believes “Software Choice”
is not what it first appears to be.

This doesn’t mean that governments always choose OSS/FS; quite the contrary. Indeed, most
governments are quite conservative in their application of OSS/FS implementations. Articles
such as Linux in Government: In Spite of Endorsements, Government Linux Projects Still
Treading Water and Not So Fast, Linux discuss some of the roadblocks and reasons
governments don’t use OSS/FS in various situations.

Interestingly, OSS/FS has forced Microsoft to be more open with its code to various
governments. Bloomberg’s January 14, 2003 article “Microsoft Has New Plan to Share Code
With Government” announces that Microsoft Corporation “will expand sharing of the code
underlying its Windows programs to help governments and agencies such as Russia and the
North Atlantic Treaty Organization (NATO) improve computer security.” It notes that
“Microsoft is facing competition from the Linux operating system, which lets customers view
and modify its source code. In the government sector in particular, Microsoft has lost
contracts to Linux, analysts said. More than 20 countries are looking at legislative proposals
that mandate considering or using Linux in government computers... [and Microsoft has]
begun to make the code available to governments, as well as key customers and partners, in
an effort to compete with Linux.”

13. Other Information
Here are some other related information sources:

1. There are several general information sites about OSS/FS or Unix that might be of
interest, such as the Free Software Foundation (FSF), the Open Source Initiative
website, and the Linux.org site. George Mason University’s Exploring and Collecting
History Online (ECHO) project has a useful collection in its material on A Free and
Open History of Free and Open Source Software, and the Massachusetts Institute of
Technology (MIT)’s Free / Open Source Research Community website also maintains
a useful collection of research papers. An older paper is John Kirch’s paper,
Microsoft Windows NT Server 4.0 versus UNIX. (also archived at the Internet
Archives). The book The Cathedral and the Bazaar by Eric Raymond examines
OSS/FS development processes and issues. A useful collection of many OSS/FS
writings, including the essay The Cathedral and the Bazaar, is in the Open Source
Reader. Peter Wayner’s book Free For All: How Linux and the Free Software
Movement Undercut the High-tech Titans describes the history and rise of OSS/FS,
and includes interviews with many key leaders; the book can be either downloaded
electronically without fee or purchased as a hardcover book. Ganesh C. Prasad has
published The Practical Manager’s Guide to Linux. Dan Kegel’s “The Case for Linux
in Universities” discusses why students need exposure to GNU/Linux at universities
(and thus why universities should support and encourage this). The paper Our Open
Source / Free Software Future: It’s Just a Matter of Time argues that within the next
few years, the standard de-facto OS that nearly everyone uses, as well as much of the
commodity software in widespread use, will be OSS/FS. You can see a collection of
general information about OSS/FS at my web page listing OSS/FS references.

2. MITRE Corporation has examined the application of OSS/FS to military systems.
Their July 2001 report, A Business Case Study of Open Source Software, concludes
that “open source methods and products are well worth considering seriously in a
wide range of government applications, particularly if they are applied with care and
a solid understanding of the risks they entail. OSS encourages significant software
development and code re-use, can provide important economic benefits, and has the
potential for especially large direct and indirect cost savings for military systems that
require large deployments of costly software products.” They also recommend
following the following steps to determine whether to use OSS or proprietary
products: assess the supporting OSS developer community, examine the market,
conduct a specific analysis of benefits and risks, compare the long-term costs, and
choose your strategy. MITRE has received a Leadership Award from the non-profit
Potomac Forum for showing that OSS can provide substantial advantages over
proprietary software, particularly when reliability and long-term support are key
requirements.

After that, in the Washington Post article Open-source Fight Flares at Pentagon, it
was reported that “Microsoft Corp. is aggressively lobbying the Pentagon to squelch
its growing use of freely distributed computer software and switch to proprietary
systems such as those sold by the software giant, according to officials familiar with
the campaign...” But the effort backfired.

MITRE Corporation report, presumably in response to such efforts, prepared a second
report at the request of the Department of Defense (DoD) Defense Information
Systems Agency (DISA). The report was titled “Use of Free and Open Source
Software in the US Dept. of Defense” and was originally dated May 10, 2002,
publicly released on October 28, 2002, and was updated slightly in 2003. This report

concluded that OSS/FS use in the DoD is widespread and should be expanded. This
MITRE report concluded that “banning [OSS/FS] would have immediate, broad, and
strongly negative impacts on the ability of many sensitive and security-focused DoD
groups to defend against cyberattacks.” The report also found that the GPL so
dominates in DoD applications that a ban on just the GPL would have the same
strongly negative impacts as banning all OSS/FS. MITRE noted that OSS/FS “plays a
far more critical role in the DoD than has been generally recognized.” In a two-week
survey period MITRE identified a total of 115 FOSS applications and 251 examples
of their use. MITRE concluded that “Neither the survey nor the analysis supports the
premise that banning or seriously restricting [OSS/FS] would benefit DoD security or
defensive capabilities. To the contrary, the combination of an ambiguous status and
largely ungrounded fears that it cannot be used with other types of software are
keeping [OSS/FS] from reaching optimal levels of use.” It short, MITRE found that
OSS/FS is widely used, and should be even more widely used. On May 28, 2003, the
DoD issued a formal memo placing OSS/FS on a level playing field with proprietary
software, without imposing any additional barriers beyond those already leveled on
its software.

The Post article also noted that “at the Census Bureau, programmers used open-
source software to launch a Web site for obtaining federal statistics for $47,000,
bureau officials said. It would have cost $358,000 if proprietary software were used.”

3. The European Free/Libre and Open Source Software (FLOSS): Survey and Study is a
large multi-part report examining OSS/FS from a number of different vantage points.
The report is divided into the following (besides its summary and raw data):

o Part I: Use of Open Source Software in Firms and Public Institutions,
o Part II: Firms’ Open Source Activities: Motivations and Policy Implications
o Part II B: Open Source Software in the Public Sector: Policy within the

European Union
o Part III: Basics of Open Source Software Markets and Business Models
o Part IV: Survey of Developers
o Part V: Source Code Survey

4. Computer Sciences Corporation (CSC) released in 2004 the large paper Open Source:
Open for Business reporting many advantages to employing OSS/FS.

5. Microsoft has been trying to claim that open source is somehow dangerous, and
indeed is its leading critic, yet the Wall Street Journal’s Lee Gomes found that
“Microsoft Uses Open-Source Code Despite Denying Use of such Software.” Here
are some interesting quotes from his article:

... But Microsoft’s statements Friday suggest the company has itself been taking
advantage of the very technology it has insisted would bring dire consequences to
others. “I am appalled at the way Microsoft bashes open source on the one hand,
while depending on it for its business on the other,” said Marshall Kirk McKusick, a
leader of the FreeBSD development team.

More recently Microsoft has targeted the GPL license rather than all OSS/FS licenses,
claiming that the GPL is somehow anti-commercial. But this claim lacks evidence,
given the many commercial companies (e.g., IBM, Sun, and Red Hat) who are using
the GPL. Also, see this paper’s earlier note that Microsoft itself makes money by
selling a product with GPL’ed components. The same article closes with this
statement:

In its campaign against open-source, Microsoft has been unable to come up with
examples of companies being harmed by it. One reason, said Eric von Hippel, a

Massachusetts Institute of Technology professor who heads up a research effort in the
field, is that virtually all the available evidence suggests that open source is “a huge
advantage” to companies. “They are able to build on a common standard that is not
owned by anyone,” he said. “With Windows, Microsoft owns them.”

Other related articles include Bruce Peren’s comments, Ganesh Prasad’s How Does
the Capitalist View Open Source?, and the open letter Free Software Leaders Stand
Together.

6. Indeed, many who have analyzed general information technology (IT) trends or
Microsoft’s actions have concluded that strongly depending on Microsoft’s products
is now a dangerous strategy. 2003 And Beyond by Andrew Grygus examines the IT
industry from a small business point of view, and identifies a large number of dangers
from depending on a Microsoft-based infrastructure. Fundamentally, Microsoft is
working hard to increase customer dependency, and charges exorbitantly once the
customer cannot practically switch.

7. Microsoft inadvertently advocated OSS/FS in leaked documents called the
”Halloween” documents. The original first two Halloween documents found that
OSS/FS was far more effective than they wished to admit. Halloween 7 gives results
of one of their surveys, again, with many positive comments about OSS/FS.

8. Another leaked internal Microsoft document is Converting a UNIX .COM Site to
Windows (by David Brooks). This document describes lessons learned when
converting Hotmail from the OSS/FS FreeBSD to Microsoft Windows after Microsoft
purchased Hotmail, including advantages and disadvantages of each approach, and
ends up identifying a large number of advantages of their competition. For example,
it noted that “entrepreneurs in the startup world are generally familiar with one
version of UNIX (usually through college education), and training in one easily
converts to another.” An article in The Register summarizes many of the advantages
of the Unix approach given in the paper.

9. Several documents were written to counter Microsoft’s statements such as those in
Microsoft’s “Linux Myths”. This includes LWN’s response and Jamin Philip Gray’s
response, and the FUD-counter site. The shared source page argues that Microsoft’s
“shared source” idea is inferior to open source. Richard Stallman’s The GNU GPL
and the American Way counters the amusing claim by Microsoft that the GPL was
“un-American.” The letter Free Software Leaders Stand Together argues against the
statements by Craig Mundie. You can find many general sites about Microsoft,
including Cloweth’s site.

10. In a story full of ironies, Microsoft and Unisys teamed up in a well-funded marketing
campaign against Unix, in part to try to revive Unisys’ sagging sales of Windows-
based products. The 18-month, $25 million campaign, dubbed “We have the Way
Out,” specifically attacked the Unix offerings of Sun, IBM, and Hewlett-Packard, but
since the major OSS/FS OSes are Unix or Unix-like, it attacks them as well. In a
delicious irony, it was revealed that the anti-Unix campaign website is powered by
Unix software - in this case, FreeBSD (an OSS/FS version of Unix) and the OSS/FS
Web server Apache. Once this was publicly revealed, Microsoft and Unisys quickly
switched to a Windows-based system.. and then the website failed to operate at all for
several days. If that wasn’t enough, Andrew Orlowski reported in The Register a
further analysis of this website, noting that port 3306 was open on their website - a
port primarily used by MySQL and Postgres. In other words, it appears that their anti-
Unix site was still using OSS/FS software (not Microsoft’s own database) that is
primarily deployed on Unix-like systems. Even their original imagery turns out to
have had serious problems; the campaign’s original graphic showed a floor almost
wholly covered in mauve paint (Sun Microsystem’s color), and the alternative offered
was to jump through a window. Many literate readers will recognize this symbol (the

act of throwing out through, or of being thrown out of, a window) as defenestration, a
way of killing rulers and also a popular way of inviting kings to commit suicide in
17th century Europe. In other words, this imagery suggests that you should use the
window[s] to commit suicide (!). Leon Brooks then analyzed the site further - and
found that the “way out” site used JSP (a technology fathered by Sun, Unix
specialists). He also found that the site violated many standards; the site’s content
failed the W3C validation suites (Microsoft is a member of the W3C), and uses a
Windows-only character set that is not only non-standard, but actively conflicts with
an important international standard (and ironically one which Microsoft is actively
promoting). If using only Windows is so wonderful, why can’t the advocacy site
conform to international standards? The real problem here, of course, is that trying to
convince people that Unix is to be avoided at all costs - while using Unix and then
having serious problems when trying to use an alternative - is both ironic and
somewhat hypocritical.

11. “How Big Blue Fell For Linux” is an article on how IBM transitioned to becoming a
major backer. IBM announced that it planned to invest $1 Billion in GNU/Linux in
2001 all by itself (see the IBM annual report). In 2002 IBM reported that they had
already made almost all of the money back; I and others are a little skeptical of these
claims, but it’s clear that IBM has significantly invested in GNU/Linux and seem to
be pleased with the results (for an example, see their Linux-only mainframe). This is
not just a friendly gesture, of course; companies like IBM view OSS/FS software as a
competitive advantage, because OSS/FS frees them from control by another
organization, and it also enables customers to switch to IBM products and services
(who were formerly locked into competitor’s products). Thankfully, this is a good
deal for consumers too. In 2002, IBM had 250 employees working full time to
improve Linux.

12. For a scientifically unworthy but really funny look at what people who use the
various OSes say, take a look at the Operating System Sucks-Rules-O-Meter. It
counts how many web pages make statements like “Linux rocks”. It’s really barely an
opinion poll, but if nothing else it’s great for a laugh.

13. There have been several academic studies of OSS/FS. For example, “A Framework
for Open Source Projects” (a Master Thesis in Computer Science by Gregor J.
Rothfuss) describes a framework for describing Open Source projects, introducing
notions of actors, roles, areas, processes and tools, and depicts their interrelationships.
The goal was to provide a conceptual foundation and a help for organizing and
managing Open Source projects.

14. Several studies examine developers (instead of the programs they write), including
“A Quantitative Profile of a Community of Open Source Linux Developers”,
Herman, Hertel and Niedner’s study (based on questionnaires), and the Who Is Doing
It (WIDI) study. The European Free/Libre and Open Source Software Survey
(FLOSS) has a large amount of information on developers. The paper Two Case
Studies of Open Source Software Development: Apache and Mozilla examines two
major open source projects, the Apache web server and the Mozilla browser, and
using archives (such as source code change history and problem reports) they
quantify aspects of developer participation, core team size, code ownership,
productivity, defect density, and problem resolution intervals for these projects. The
Boston Consulting Group/OSDN Hacker Survey (release 0.73, July 21, 2002) made
some interesting observations by sampling SourceForge users. For example, it gives
evidence that open source developers can be divided into four groups (based on their
motivations for writing OSS/FS software):

a. Believers (19%): believe source code should be open.
b. Learning and Fun (29%): for non-work needs and intellectual stimulation.
c. Hobbyists (27%): need the code for a non-work reason.
d. Professionals (25%): for work needs and professional status.

Journalists sometimes like to romanticize OSS/FS developers as being mostly teenage
boys with little experience, but the survey didn’t support that view. The study found
that the open source developers surveyed are mostly experienced professionals,
having an average of 11 years of programming experience; the average age was 28.

The paper “Altruistic individuals, selfish firms? The structure of motivation in Open
Source Software” by Andrea Bonaccorsi and Cristina Rossi (First Monday, January
2004) discusses a 2002 survey of 146 Italian firms supplying OSS/FS, and compared
that with surveys of individual programmers. It found significant differences between
motivations of individuals and firms, with firms emphasizing economic and
technological reasons. The top reasons (in order) of OSS/FS-supplying firms were (1)
because OSS allows small enterprises to afford innovation, (2) because contributions
and feedback from the Free Software community are very useful in fixing bugs and
improving software, (3) because of the reliability and quality of OSS, (4) because the
firm wants to be independent of the price and licence policies of large software
companies, and (5) because we agree with the values of the Free Software movement.

15. If you determine that you wish to start an OSS/FS project, there are some documents
available to aid you. This includes the Free Software Project Management HOWTO
and Software Release Practice HOWTO. You should also read The Cathedral and the
Bazaar.

16. Other evaluations include the Gartner Group and GNet evaluations.

For general information on OSS/FS, see my list of Open Source Software / Free Software
(OSS/FS) references at http://www.dwheeler.com/oss_fs_refs.html

14. Conclusions
OSS/FS has significant market share in many markets, is often the most reliable software, and
in many cases has the best performance. OSS/FS scales, both in problem size and project size.
OSS/FS software often has far better security, perhaps due to the possibility of worldwide
review. Total cost of ownership for OSS/FS is often far less than proprietary software,
especially as the number of platforms increases. These statements are not merely opinions;
these effects can be shown quantitatively, using a wide variety of measures. This doesn’t even
consider other issues that are hard to measure, such as freedom from control by a single
source, freedom from licensing management (with its accompanying risk of audit and
litigation), Organizations can transition to OSS/FS in part or in stages, which for many is a far
more practical transition approach.

Realizing these potential OSS/FS benefits may require approaching problems in a different
way. This might include using thin clients, deploying a solution by adding a feature to an
OSS/FS product, and understanding the differences between the proprietary and OSS/FS
models. Acquisition processes may need to change to include specifically identifying OSS/FS
alternatives, since simply putting out a “request for proposal” may not yield all the viable
candidates. OSS/FS products are not the best technical choice in all cases, of course; even
organizations which strongly prefer OSS/FS generally have some sort of waiver process for
proprietary programs. However, it’s clear that considering OSS/FS alternatives can be
beneficial.

Of course, before deploying any program you need to evaluate how well it meets your needs,
and some organizations do not know how to evaluate OSS/FS programs. If this describes your
circumstance, you may wish to look at the companion articles How to Evaluate OSS/FS
Programs and the Generally Recognized as Mature (GRAM) list.

OSS/FS options should be carefully considered any time software or computer hardware is
needed. Organizations should ensure that their policies encourage, and not discourage,
examining OSS/FS approaches when they need software.

Appendix A. About Open Source Software /
Free Software (OSS/FS)
This appendix gives more information about open source software / free software (OSS/FS):
definitions (of source code, free software, open source software, and various movements),
motivations of developers, history, license types, management approaches, and forking.

A.1 Definitions

There are official definitions for the terms “Free Software” (as the term is used in this text)
and “open source software”. However, understanding a few fundamentals about computer
software is necessary before these definitions make sense. Software developers create
computer programs by writing text, called “source code,” in a specialized language. This
source code is often mechanically translated into a format that the computer can run. As long
as the program doesn’t need to be changed (say, to support new requirements or be used on a
newer computer), users don’t necessarily need the source code. However, changing what the
program does usually requires possession and permission to change the source code. In other
words, whoever legally controls the source code controls what the program can and cannot
do. Users without source code often cannot have the program changed to do what they want
or have it ported to a different kind of computer.

The next two sections give the official definitions of Free Software and Open Source
Software (though in practice, the two definitions are essentially the same thing); I then discuss
some related defintions, and contrast the terms “Free Software” and “Open Source Software”.

A.1.1 Definition of Free Software

OSS/FS programs have existed since digital computers were invented, but beginning in the
1980s, people began to try capture the concept in words. The two main definitions used are
the “free software definition” (for free software) and the “open source definition” (for open
source software). Software meeting one definition usually meets the other as well. Since the
term “free software” came first, we’ll examine its definition first.

The Free Software Definition is published by Richard Stallman’s Free Software Foundation.
Here is the key text of that definition:

“Free software” is a matter of liberty, not price. To understand the concept, you should think
of “free” as in “free speech,” not as in “free beer.” Free software is a matter of the users’
freedom to run, copy, distribute, study, change and improve the software. More precisely, it
refers to four kinds of freedom, for the users of the software:

• The freedom to run the program, for any purpose (freedom 0).
• The freedom to study how the program works, and adapt it to your needs (freedom 1).

Access to the source code is a precondition for this.
• The freedom to redistribute copies so you can help your neighbor (freedom 2).

• The freedom to improve the program, and release your improvements to the public,
so that the whole community benefits. (freedom 3). Access to the source code is a
precondition for this.

A program is free software if users have all of these freedoms. Thus, you should be free to
redistribute copies, either with or without modifications, either gratis or charging a fee for
distribution, to anyone anywhere. Being free to do these things means (among other things)
that you do not have to ask or pay for permission. You should also have the freedom to make
modifications and use them privately in your own work or play, without even mentioning that
they exist. If you do publish your changes, you should not be required to notify anyone in
particular, or in any particular way. The freedom to use a program means the freedom for any
kind of person or organization to use it on any kind of computer system, for any kind of
overall job, and without being required to communicate subsequently with the developer or
any other specific entity.

The text defining “free software” is actually much longer, explaining further the approach. It
notes that “Free software does not mean non-commercial. A free program must be available
for commercial use, commercial development, and commercial distribution. Commercial
development of free software is no longer unusual; such free commercial software is very
important.”

A.1.2 The Open Source Definition

Open source software is officially defined by the open source definition:

Open source doesn’t just mean access to the source code. The distribution terms of open-
source software must comply with the following criteria:

1. Free Redistribution

The license shall not restrict any party from selling or giving away the software as a
component of an aggregate software distribution containing programs from several different
sources. The license shall not require a royalty or other fee for such sale.

2. Source Code

The program must include source code, and must allow distribution in source code as well as
compiled form. Where some form of a product is not distributed with source code, there must
be a well-publicized means of obtaining the source code for no more than a reasonable
reproduction cost preferably, downloading via the Internet without charge. The source code
must be the preferred form in which a programmer would modify the program. Deliberately
obfuscated source code is not allowed. Intermediate forms such as the output of a
preprocessor or translator are not allowed.

3. Derived Works

The license must allow modifications and derived works, and must allow them to be
distributed under the same terms as the license of the original software.

4. Integrity of The Author’s Source Code

The license may restrict source-code from being distributed in modified form only if the
license allows the distribution of “patch files” with the source code for the purpose of

modifying the program at build time. The license must explicitly permit distribution of
software built from modified source code. The license may require derived works to carry a
different name or version number from the original software.

5. No Discrimination Against Persons or Groups

The license must not discriminate against any person or group of persons.

6. No Discrimination Against Fields of Endeavor

The license must not restrict anyone from making use of the program in a specific field of
endeavor. For example, it may not restrict the program from being used in a business, or from
being used for genetic research.

7. Distribution of License

The rights attached to the program must apply to all to whom the program is redistributed
without the need for execution of an additional license by those parties.

8. License Must Not Be Specific to a Product

The rights attached to the program must not depend on the program’s being part of a
particular software distribution. If the program is extracted from that distribution and used or
distributed within the terms of the program’s license, all parties to whom the program is
redistributed should have the same rights as those that are granted in conjunction with the
original software distribution.

9. The License Must Not Restrict Other Software

The license must not place restrictions on other software that is distributed along with the
licensed software. For example, the license must not insist that all other programs distributed
on the same medium must be open-source software.

10. No provision of the license may be predicated on any individual technology or style
of interface.

A.1.3 Other Related Definitions and License Issues

The Open Source Definition was actually derived from the Debian Free Software Guidelines
(DFSG); those original guidelines are still maintained and used by the widely-used and
influential Debian project. Thus, the Debian guidelines are nearly identical to the Open
Source Definition, yet Debian tends to use the term “Free Software” in its materials.

In addition, the debian-legal mailing list discusses licensing issues in great depth, in an effort
to evaluate licenses based on the freedoms they grant or do not grant. The DFSG and
Software License FAQ states that “The DFSG is not a contract. This means that if you think
you’ve found a loophole in the DFSG then you don’t quite understand how this works. The
DFSG is a potentially imperfect attempt to express what free software means to Debian.”

The DFSG and Software License FAQ also defines three additional “tests” used on the
debian-legal mailing list to help them evaluate whether or not a license is “Free” (as in
freedom). These tests aren’t the final word, but because they’re described as scenarios, they
are sometimes easier for people to understand (and I quote the Debian FAQ here):

1. The Desert Island test. Imagine a castaway on a desert island with a solar-powered
computer. This would make it impossible to fulfill any requirement to make changes
publicly available or to send patches to some particular place. This holds even if such
requirements are only upon request, as the castaway might be able to receive
messages but be unable to send them. To be Free, software must be modifiable by this
unfortunate castaway, who must also be able to legally share modifications with
friends on the island.

2. The Dissident test. Consider a dissident in a totalitarian state who wishes to share a
modified bit of software with fellow dissidents, but does not wish to reveal the
identity of the modifier, or directly reveal the modifications themselves, or even
possession of the program, to the government. Any requirement for sending source
modifications to anyone other than the recipient of the modified binary - in fact any
forced distribution at all, beyond giving source to those who receive a copy of the
binary - would put the dissident in danger. For Debian to consider software Free it
must not require any such excess distribution.

3. The Tentacles of Evil test. Imagine that the author is hired by a large evil
corporation and, now in their thrall, attempts to do the worst to the users of the
program: to make their lives miserable, to make them stop using the program, to
expose them to legal liability, to make the program non-Free, to discover their secrets,
etc. The same can happen to a corporation bought out by a larger corporation bent on
destroying Free software in order to maintain its monopoly and extend its evil empire.
The license cannot allow even the author to take away the required freedoms!

And there are practical issues that arise too:

1. GPL compatibility is very desirable. The GPL is by far the most popular OSS/FS
license. Thus, a license that isn’t compatible with the GPL causes many practical
problems, because the vast amount of GPL software can’t be combined with it.
Choosing a GPL-compatible license (such as the BSD-new, MIT/X, LGPL, or GPL
license) is often the safest course. See my paper for more information on why
selecting a GPL-compatible license is important for OSS/FS projects.

2. Choice-of-law and choice-of-venue requirements are very undesirable. Many
developers strongly object to licenses that specify that the licensee must agree to be
judged by the laws of a specific jurisdiction and/or be judged at a specific location.
This was a key problem, for example, for the older Python licenses. The problem is
that choice-of-law and choice-of-venue requirements create superfluous
incompatibilities with any other licenses with choice-of-law and/or choice-of-venue
restrictions. A goal of OSS/FS licenses is to allow software to be combined and
modified in new, innovative ways, and such statements interfere with that goal.

3. Advertizing clauses are very undesirable. Some old licenses, like the old BSD
license, required that credit be given to developers in certain ways, e.g., whenever a
product is advertized. When there’s only one developer, that doesn’t sound too bad.
But imagine what happens as more developers get involved -- suddenly each
advertisement has to individually list (say) 20,000 people! These kinds of licenses
don’t scale well as more people become involved, and major OSS/FS projects can
involve large numbers of developers.

A technical discussion examining the freedom of a license might compare the license against
the Free Software Definition (all four freedoms), the Open Source Definition (every point)
and/or the Debian Free Software Guidelines, and the tests (scenarios) above, as well as
considering practical concerns like the ones above. An example of such analysis is Mark
Shewmaker’s August 2004 examination of the Microsoft Royalty Free Sender ID Patent
License.

A.1.4 Open Source Movement and Free Software Movement

As a practical matter, the definitions given above for free software and open source software
are essentially the same. Software meeting the criteria for one generally end up meeting the
other definition as well; indeed, those who established the term “open source” describe their
approach as marketing approach to Free Software. However, to some people, the connotations
and motives are different between the two terms.

Some people who prefer to use the term “free software” intend to emphasize that software
should always meet such criteria for ethical, moral, or social reasons, emphasizing that these
should be the rights of every software user. Such people may identify themselves as members
of the “free software movement”. Richard Stallman is a leader of this group; his arguments
are given in his article Why “Free Software” is better than “Open Source”

Some people are not persuaded by these arguments, or may believe the arguments but do not
think that they are effective arguments for convincing others. Instead, they prefer to argue the
value of OSS/FS on other grounds, such as cost, security, or reliability. Many of these people
will prefer to use the term “open source software”, and some may identify themselves as part
of the “open source movement”. Eric Raymond was one of the original instigators of the
name “open source” and is widely regarded as a leader of this group.

Is the “free software movement” a subset of the “open source movement”? That depends on
how the “open source movement” is defined. If the “open source movement” is a general term
describing anyone who supports OSS or FS for whatever reason, then the “free software
movement” is indeed a subset of the “open source movement”. However, some leaders of the
open source movement (such as Eric Raymond) specifically recommend not discussing user
freedoms, and since this is the central principle of the free software movement, the two
movements are considered separate groups by many.

The Free/Libre and Open Source Software Survey (FLOSS), part IV, summarizes a survey of
OSS/FS developers (primarily European developers), and specifically examined these terms.
In this study, 48.0% identified themselves as part of the “Free Software”, community, 32.6%
identified themselves as part of the “open source” community, and 13.4% stated that they did
not care. A slight majority (52.9%) claimed that the movements different in principle, but the
work is the same, while 29.7% argued that the movements were fundamentally different, and
17.3% do not care at all about the differences. After examining the data, the surveyers
determined that OSS/FS developers could be divided into six groups:

1. developers who assign themselves to the Free Software community and who see
fundamental differences between the two communities (18%).

2. developers who consider themselves as part of the Open Source community and who
perceive fundamental differences between the two communities (9%).

3. developers who assign themselves to the Free Software community and who perceive
only principle differences between the two communities, but consider work in the two
communities the same (26%).

4. developers who assign themselves to the Open Source community and see principle,
but no fundamental differences between the two communities (17%).

5. developers who assign themselves to either the Free Software or the Open Source
Software community, but are not bothered by differences between the two
communities (9%).

6. developers who do not care to which community they belong (20%).

This difference in terminology and motivation can make it more difficult for authors of
articles on OSS/FS (like this one). The motivations of the different movements may be

different, but since practice the developers usually work together, it’s very useful to have a
common term that covers all groups. Some authors choose to use one of the terms (such as
OSS). Other authors use some other term merging the two motivations, but as of this time
there is no single merged term used by everyone. This article uses the merged term OSS/FS.

A.2 Motivations

This leads to a more general and oft-asked question: “Why do developers contribute to
OSS/FS projects?” The short answer is that there are many different motivations.

The Boston Consulting Group/OSDN Hacker Survey (release 0.73, July 21, 2002) made some
interesting observations by sampling SourceForge users. The top motivations given for
participating in OSS/FS development were as follows:

1. intellectually stimulating (44.9%)
2. improves skill (41.3%)
3. work functionality (33.8%)
4. code should be open (33.1%)
5. non-work functionality (29.7%)
6. obligation from use (28.5%)

By examining these motivations, they concluded that open source developers could be
divided into four groups (based on their primary motivations for writing OSS/FS software):

a. Believers (19%): believe source code should be open.
b. Learning and Fun (29%): for non-work needs and intellectual stimulation.
c. Hobbyists (27%): need the code for a non-work reason.
d. Professionals (25%): for work needs and professional status.

Part IV of the Free/Libre and Open Source Software Survey (FLOSS), mentioned above, also
examined individual developer motivations, and found a variety of motivations.

Many businesses contribute to OSS/FS development, and their motivations also vary. Many
companies develop OSS/FS to sell support - by giving away the product, they expect to get
far more support contracts. Joel Spolsky’s “Strategy Letter V” notes that “most of the
companies spending big money to develop open source software are doing it because it’s a
good business strategy for them.” His argument is based on microeconomics, in particular,
that every product in the marketplace has substitutes and complements. A substitute is another
product you might buy if the first product is too costly, while a complement is a product that
you usually buy together with another product. Since demand for a product increases when
the prices of its complements decrease, smart companies try to commoditize their products’
complements. For many companies, supporting an OSS/FS product turns a complementary
product into a commodity, resulting in more sales (and money) for them.

One widely-read essay discussing commercial motivations is Eric Raymond’s The Magic
Cauldron. The European Free/Libre and Open Source Software (FLOSS): Survey and Study
has additional statistics on the motivations of individuals and corporations who develop
OSS/FS.

A.3 History

In the early days of computing (approximately 1945 to 1975), computer programs were often
shared among developers, just as OSS/FS practitioners do now. An important during this time

period was the ARPAnet (the early form of the Internet). Another critical development was
the operating system Unix, developed by AT&T researchers, and distributed as source code
(with modification rights) for a nominal fee. Indeed, the interfaces for Unix eventually
became the basis of the POSIX suite of standards. However, as years progressed, and
especially in the 1970s and 1980s, software developers increasingly closed off their software
source code from users. This included the Unix system itself; many had grown accustomed to
the freedom of having the Unix source code, but AT&T suddenly increased fees and limited
distribution, making it impossible for many users to change the software they used and share
those modifications with others.

Richard Stallman, a researcher at the MIT Artificial Intelligence Lab, found this closing of
software source code intolerable. In 1984 he started the GNU project to develop a complete
Unix-like operating system which would be Free Software (free as in freedom, not as in price,
as described above). In 1985, Stallman established the Free Software Foundation (FSF) to
work to preserve, protect and promote Free Software; the FSF then became the primary
organizational sponsor of the GNU Project. The GNU project developed many important
software programs, including the GNU C compiler (gcc) and the text editor emacs. A major
legal innovation by Stallman was the GNU General Public Licence (GPL), a widely popular
OSS/FS software license. However, the GNU project was stymied in its efforts to develop the
“kernel” of the operating system. The GNU project was following the advice of academics to
use a “microkernel architecture,” and was finding it difficult to develop a strong kernel using
this architecture. Without a kernel, the GNU project could not fulfill their goal.

Meanwhile, the University of California at Berkeley had had a long relationship with AT&T’s
Unix operating system, and Berkeley had ended up rewriting many Unix components. Keith
Bostic solicited many people to rewrite the remaining key utilities from scratch, and
eventually managed to create a nearly-complete system whose source code could be freely
released to the public without restriction. The omissions were quickly filled, and soon a
number of operating systems were developed based on this effort. Unfortunately, these
operating systems were held under a cloud of concern from lawsuits and counter-lawsuits for
a number of years. Another issue was that since the BSD licenses permitted companies to take
the code and make it proprietary, companies such as Sun and BSDI did so - continuously
siphoning developers from the openly sharable code, and often not contributing back to the
publicly available code. Finally, the projects that developed these operating systems tended to
be small groups of people who gained a reputation for rarely accepting the contributions by
others (this reputation is unfair, but nevertheless the perception did become widespread). The
descendants of this effort include the capable operating systems NetBSD, OpenBSD, and
FreeBSD, as a group called the *BSDs. However, while they are both used and respected, and
proprietary variants of these (such as Apple Mac OS X) are thriving, another OSS/FS effort
quickly gained the limelight and much more market share.

In 1991, Linus Torvalds began developing a small operating system kernel called “Linux”, at
first primarily for learning about the Intel 80386 chip. Unlike the BSD efforts, Torvalds
eventually settled on the GPL license, which forced competing companies working on the
kernel code to work together. Advocates of the *BSDs dispute that this is an advantage, but
even today, major Linux distributions hire key kernel developers to work together on common
code, in contrast to the corresponding commercial companies to the *BSDs which often do
not share their improvements to a common program. Torvalds made a number of design
decisions that in retrospect were remarkably wise: using a traditional monolithic kernel design
(instead of the “microkernel approach” that slowed the GNU project), using the the Intel 386
line as the primary focus, working to support user requests (such as “dual booting”), and
supporting hardware that was technically poor but widely used. And finally, Torvalds
stumbled into a development process rather different from traditional approaches by
exploiting the Internet. Torvalds’ new process looked rather different than more traditional

approaches. He publicly released new versions extremely often (sometimes more than once a
day, allowing quick identification when regressions occurred), and he quickly delegated areas
to a large group of developers (instead of sticking to a very small number of developers).
Instead of depending on rigid standards, rapid feedback on small increments and Darwinian
competition were used to increase quality.

When the Linux kernel was combined with the already-developed GNU operating system
components and some components from other places (such as from the BSD systems), the
resulting operating system was surprisingly stable and capable. Such systems were called
GNU/Linux systems or simply Linux systems. Note that there is a common misconception in
the media that needs to be countered here: Linus Torvalds never developed the so-called
“Linux operating system”. Torvalds was the lead developer of the Linux kernel, but the kernel
is only one of many pieces of an operating system; most of the GNU/Linux operating system
was developed by the GNU project and by other related projects.

In 1996, Eric Raymond realized that Torvalds had stumbled upon a whole new style of
development, combining the sharing possibilities of OSS/FS with the speed of the Internet
into a new development process. His essay The Cathedral and the Bazaar identifies that
process, in a way that others could try to emulate the approach. The essay was highly
influential, and in particular convinced Netscape to switch to an OSS/FS approach for its next
generation web browser (the road for Netscape was bumpy, but ultimately successful).

In spring of 1997, a group of leaders in the Free Software community gathered, including Eric
Raymond, Tim O’Reilly, and Larry Wall. They were concerned that the term “Free Software”
was too confusing and unhelpful (for example, many incorrectly thought that the issue was
having no cost). The group coined the term “open source” as an alternative term, and Bruce
Perens developed the initial version of the “open source definition” to define the term. The
term “open source” is now very widely used, but not universally so; Richard Stallman (head
of the FSF) never accepted it, and even Bruce Perens switched back to using the term “Free
Software” because Perens felt that there needed to be more emphasis on user freedom.

Major Unix server applications (such as the OSS/FS Apache web server) were easily moved
to GNU/Linux or the *BSDs, since they all essentially implemented the POSIX standards. As
a result, GNU/Linux and the *BSDs rapidly gained significant market share in the server
market. A number of major initiatives began to fill in gaps to create completely OSS/FS
modern operating systems, including graphical toolkits, desktop environments, and major
desktop applications. In 2002, the first user-ready versions of capable and critical desktop
applications (Mozilla for web browsing and Open Office for an office suite) were announced.

You can learn more about the history of OSS/FS from material such as Open Sources: Voices
from the Open Source Revolution and Free for All: How Linux and the Free Software
Movement Undercut the High-Tech Titans by Peter Wayner,

A.4 Licenses

There are dozens of OSS/FS licenses, but the vast majority of OSS/FS software uses one of
the four major licenses: the GNU General Public License (GPL), the GNU Lesser (or Library)
General Public License (LGPL), the MIT (aka X11) license, and the BSD-new license. Indeed
the Open Source Initiative refers to these four licenses as the classic open source licenses. The
GPL and LGPL are termed “copylefting” licenses (also called “protective” licenses), that is,
these licenses are designed to prevent (protect) the code from becoming proprietary. Here is a
short description of these licenses:

1. The GPL allows anyone to use the program and modify it, but prevents code from
becoming proprietary once distributed and it also forbids proprietary programs from
“linking” to it.

2. The MIT and BSD-new licenses let anyone do almost anything with the code except
sue the authors. One minor complication: there are actually two “BSD” licenses,
sometimes called “BSD-old” and “BSD-new”; new programs should use BSD-new
instead of BSD-old.

3. The LGPL is a compromise between the GPL and the MIT/BSD-new approaches, and
was originally intended for code libraries. Like the GPL, LGPL-licensed software
cannot be changed and made proprietary, but the LGPL does permit proprietary
programs to link to the library, like the MIT/BSD-new licenses.

Note that all of these licenses (the GPL, MIT, BSD-new, and LGPL) permit the commercial
sale and the commercial use of the software, and many such programs as sold and used that
way. See Perens’ paper for more information comparing these licenses.

The most popular OSS/FS license by far is the GPL. For example, Freshmeat.net reported on
April 4, 2002 that 71.85% of the 25,286 software branches (packages) it tracked are GPL-
licensed (the next two most popular were LGPL, 4.47%, and the BSD licenses, 4.17%).
Sourceforge.net reported on April 4, 2002 that the GPL accounted for 73% of the 23,651
“open source” projects it hosted (next most popular were the LGPL, 10%, and the BSD
licenses, 7%). In my paper More than a Gigabuck: Estimating GNU/Linux’s Size, I found that
Red Hat Linux, one of the most popular GNU/Linux distributions, had over 30 million
physical source lines of code in version 7.1, and that 50.36% of the lines of code were
licensed solely under the GPL (the next most common were the MIT license, 8.28%, and the
LGPL, 7.64%). If you consider the lines that are dual licensed (licensed under both the GPL
and another license, allowing users and developers to pick the license to use), the total lines of
code under the GPL accounts for 55.3% of the total. My paper on GPL compatibility
discusses these figures further, and discusses why, if you choose to develop OSS/FS code,
you should strongly consider using a licensing approach that is compatible with the GPL.

A.5 Management Approaches

There is no single approach to managing an OSS/FS project, just as there is no single
approach to managing proprietary projects. Management approaches are strongly influenced
by the size and scope of the project, as well as the leadership styles of those managing the
project.

The Cathedral and the Bazaar argues for a particular style of development, termed the
“bazaar” style. In this approach, there are a large number of small, incremental releases, and a
large number of developers can send in patches for proposed improvements. The releases
need to compile and run (to some extent), so that developers can test and improve them. Not
all OSS/FS projects work this way, but many do.

It is useful to examine the management approaches of successful projects to identify
approaches that may work elsewhere. Here are a few:

1. Linux kernel. The Linux kernel’s development process is based on a hierarchy of four
levels: ordinary developers, maintainers, trusted lieutenants, and the benevolent
dictator. Ordinary developers can propose changes, but usually they submit their
proposals to a maintainer of a particular component of the kernel; the maintainers
then send their sets up to a trusted lieutenants, who then sends it up to the benevolent
dictator (currently Linus Torvalds). At each stage testing can take place. The

benevolent dictator writes code and issues general direction, but his primary job is to
be the integrator and arbiter of changes. Development releases are made often; after
the development has stabilized, a “stable” branch is created with a separate maintainer
of the branch. Linux distributions then take the stable branch, test it further, and select
the “best” version of the stable branch.

2. Apache. The Apache web server project, in contrast, is run by a group. At the top is
the “Apache HTTP Server Project Management Committee (PMC)” a group of
volunteers who are responsible for managing the Apache HTTP Server Project.
Membership in the Apache PMC is by invitation only and must be approved by
consensus of the active Apache PMC members. Membership can be revoked by a
unanimous vote of all the active PMC members other than the member in question.
Most changes are approved by consensus.

An action item requiring consensus approval must receive at least 3 binding +1 votes
and no vetos (a “-1” vote). An action item requiring majority approval must receive at
least 3 binding +1 votes and more +1 votes than -1 votes (i.e., a majority with a
minimum quorum of three positive votes).

Ideas must be review-then-commit; patches can be commit-then-review. With a
commit-then-review process, they trust that the developer doing the commit has a
high degree of confidence in the change. Doubtful changes, new features, and large-
scale overhauls need to be discussed before being committed to a repository.

See the Apache Voting Rules for more detailed information.

3. Perl. Perl was originally developed by Larry Wall, but he no longer wishes to have to
always have the job of integrating patches. Thus, there is a notional “patch pumpkin”
that must be acquired to change Perl. In Moody’s Rebel Code, Wall explains that “we
have essentially a chief integrator who is called the pumpkin holder.” Moody adds
that this “integration involves taking the approved patches and adding them into the
main Perl source code.” Larry Wall, as original developer, can veto any change. More
information about the patch pumpkin (as it has currently evolved) is available from
perl.com.

4. Sourceforge-based Applications. Many OSS/FS projects are supported by
SourceForge, which includes the CVS tool for configuration management. Typically,
those who have write access to the repository simply make their updates; others who
do not have such access post their requests or patches to the bug tracking database (or
mailing list) and ask one of those with write access to include it. There are typically
only a few people with direct write access, so conflicts are rare and CVS supports
resolving the occasional conflict.

A.6 Forking

A fork is a competing project based on a version of the pre-existing project’s source code. All
OSS/FS projects can be “forked”; the ability to create a fork is fundamental to the definition
of OSS/FS.

Simply creating or releasing a variant of a project’s code does not normally create a fork.
Indeed, releasing variants for experimentation is considered normal in a typical OSS/FS
development process. Many OSS/FS projects (such as the Linux kernel development project)
intentionally have “fly-offs” (also called “bake-offs”) where different developers implement
different competing approaches; the results are compared and the approach that produces the
best results (the “winner”) is accepted by the project. These “fly-offs” are often discussed in

evolutionary terms, e.g., the “winning mutation” is accepted into the project and the
alternatives are abandoned as “evolutionary dead ends”. Since all parties intend for the “best”
approach to accepted by the project, and for the other approaches to be abandoned, these are
not forks. What is different about a fork is intent: the person(s) creating the fork intend for the
fork to replace or compete with the original project they are forking.

Creating a fork is a major and emotional event in the OSS/FS community. It similar to a call
for a “vote of no confidence” in a parliament, or a call for a labor strike in a labor dispute.
Those creating the fork are essentially stating that they believe the project’s current leadership
is ineffective, and are asking developers to vote against the project leadership by abandoning
the original project and switching to their fork. Those who are creating the fork must argue
why other developers should support their fork; common reasons given include a belief that
changes are not being accepted fast enough, that changes are happening too quickly for users
to absorb them, that the project governance is too closed to outsiders, that the licensing
approach is hampering development, or that the project’s technical direction is fundamentally
incorrect.

Most attempts to create forks are ignored, for there must be a strong reason for developers to
consider switching to a competing project. Developers usually resist supporting OSS/FS
forks: they divide effort that would be more effective when combined, they make support and
further development more difficult, and they require developers to discuss project governance
rather than improving the project’s products. Developers can attempt to support both projects,
but this is usually impractical over time as the projects diverge. Eric Raymond, in
Homesteading the Noosphere, argues that a prime motivation in OSS/FS development is
reputation gain through the use of a gift culture, and that forking significantly interferes with
this motivation.

Some historical examples of major forks may help give perspective, showing that often forks
“lose” while other times they “win” against the original project:

1. glibc vs. libc. When the Linux kernel was first being developed, the kernel developers
took the FSF’s GNU C library (now called glibc) and created their own fork of it
(called libc). Both were licensed under the LGPL. At the time, the Linux kernel
developers thought that the FSF’s development process for the C library was too slow
and not responding to their needs. Thus, they created a forked version of GNU libc
version 1.07.4 (which had been released February 17, 1994). In this case, however,
the original GNU C library project (led by the FSF) surpassed the forked project over
time. Over the next few years the original glibc increasingly offered far better
standards conformance, multithreading, higher performance, and more features than
the forked libc project. Elliot Lee briefly describes this history. In this case, the fork
was abandoned after several years; in 1997 through 1998 nearly all GNU/Linux
systems switched from libc back to glibc.

2. gcc vs. egcs. The GNU Compiler Collection (gcc) is a collection of important
compilers, including a C++ compiler; the main compilers are licensed under the GPL.
In 1997, there were disagreements over the development approach and slow
development speed of gcc. In particular, many were dissatisfied with the FSF-
appointed gcc maintainer, who was very slow to accept changes. Cygnus (headed by
Michael Tiemann) decided to create a fork of the project named egcs, and invited
others to join. Egcs worked at an accelerated pace, and soon surpassed the original
gcc project. In April 1997 the rift was healed; the FSF agreed to switch to using the
egcs code for gcc, and the egcs project agreed to dissolve itself and take over the
original gcc project. In this case, the fork ended with the forking project’s results
“taking over” the original project.

3. Free86 vs. X.org. The XFree86 project historically led development of a popular X
server. An X server is a critical component for implementing a graphical user
interface in a typical Unix-like system. The XFree86 project traditionally licensed the
vast majority of its code used the simple “MIT/X” open source license that is GPL-
compatible. The XFree86 president, David Dawes, decided to change the XFree86
license to one that wasn’t GPL-compatible and had many practical problems. This
proposed license change caused a serious uproar, but the project leader refused to
listen to those complaints. For example, Jim Gettys, a well-respected developer and
co-founder of X, strongly opposed this change to the XFree86 license, even though
he’s not a strong advocate of the GPL. Richard Stallman politely asked that
something be worked out. But the project leader wouldn’t budge, so the users and
some of the developers forked the project, creating a new project at X.org based on
the previous version. An article at Linux Today and a discussion at Freedesktop.org
show that the leading distributors, including Red Hat, Debian, SuSE, Gentoo,
Mandrake, and OpenBSD, are switching or plan to switch from XFree86 to X.org.
Since the XFree86 folks wouldn’t switch to a GPL-compatible license, the X.Org
Foundation (formed January 2004) announced its own version of X on April 6, 2004.
The X.Org foundation version was immediately endorsed by Novell’s SUSE, Red
Hat, HP, TrollTech, and FSF Europe among others. Very soon, nearly all developers
and users had abandoned XFree86. You can see more information in my cautionary
tale about XFree86. This is a case where a project leader attempted to make an
extremely unpopular licensing change, causing a mass exodus of its uses and
developers. Note how similar this process was to a vote of no confidence; the leader
was unwilling to listen to his customers and developers, so his customers and
developers established a project where their needs would be met.

Too many forks can be a serious problem for all of the related projects. In fact, one of the
main reasons that Unix systems lost significant market share compared to Windows was
because of the excessive number of Unix forks. Bob Young states this quite clearly in this
essay “Giving it Away”, and also suggests why this is unlikely to be a problem in copylefted
OSS/FS software:

The primary difference between [GNU/Linux and Unix] is that Unix is just another
proprietary binary-only ... OS [operating system]. The problem with a proprietary binary-
only OS that is available from multiple suppliers is that those suppliers have short-term
marketing pressures to keep whatever innovations they make to the OS to themselves for the
benefit of their customers exclusively. Over time these “proprietary innovations” to each
version of the Unix OS cause the various Unixes to differ substantially from each other. This
occurs when the other vendors do not have access to the source code of the innovation and
the license the Unix vendors use prohibit the use of that innovation even if everyone else
involved in Unix wanted to use the same innovation. In Linux the pressures are the reverse. If
one Linux supplier adopts an innovation that becomes popular in the market, the other Linux
vendors will immediately adopt that innovation. This is because they have access to the
source code of that innovation and it comes under a license that allows them to use it.

Note that the copylefting licenses (such as the GPL and LGPL) permit forks, but greatly
reduce any monetary incentive to create a fork. Thus, the project’s software licensing
approach impacts the likelihood of its forking.

The ability to create a fork is important in OSS/FS development, for the same reason that the
ability to call for a vote of no confidence or a labor strike is important. Fundamentally, the
ability to create a fork forces project leaders to pay attention to their constituencies. Even if an
OSS/FS project completely dominates its market niche, there is always a potential competitor
to that project: a fork of the project. Often, the threat of a fork is enough to cause project

leaders to pay attention to some issues they had ignored before, should those issues actually
be important. In the end, forking is an escape valve that allows those who are dissatisfied with
the project’s current leadership to show whether or not their alternative is better.

About the Author

David A. Wheeler is an expert in computer security and has a long
history of working with large and high-risk software systems. His
books include Software Inspection: An Industry Best Practice
(published by IEEE CS Press), Ada 95: The Lovelace Tutorial
(published by Springer-Verlag), and the Secure Programming for
Linux and Unix HOWTO. Articles he’s written include More than
a Gigabuck: Estimating GNU/Linux’s Size and The Most
Important Software Innovations. Mr. Wheeler’s web site is at
http://www.dwheeler.com. You may contact him using the
information at http://www.dwheeler.com/contactme.html but you
may not send him spam (he reserves the right to charge fees to
those who send him spam).

You may reprint this article (unchanged) an unlimited number of times and distribute local
electronic copies (e.g., inside an organization) as long as no fee is involved. You may also
quote this article, as long as the quote is clearly identified as such and you attribute the quote
(be sure to use my middle initial). You may not “mirror” this document to the public Internet or
other public electronic distribution systems; mirrors interfere with ensuring that readers can
immediately find and get the current version of this document. Copies clearly identified as old
versions, not included in normal searches as current Internet data, and for which there is no
charge (direct or indirect) to access them are usually fine; examples of acceptable copies are
Google caches and the Internet archive’s copies. Please contact David A. Wheeler for
clarifications or if you’d like to translate this article into another (human) language; I would
love to see more freely-available translations of this document, and I will help you coordinate
with others who may be translating the document into that language. Trademarks are registered
by various organizations, for example, Linux(r) is a trademark of Linus Torvalds. This is a
personal essay and not endorsed by David A. Wheeler’s employer. This article is a research
article, not software nor a software manual.

